
CS 61A Structure and Interpretation of Computer Programs
Summer 2024 Midterm Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign your name to confirm that all work on this exam will be your own.

The penalty for academic misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (12.0 points) Generiterator

Assume the following code has been executed. No error occurs when executing this code block.

def f(x):
yield from map(lambda x: x[::-1], x)

def next_next(i):
print(next(i))
return next(i)

def generiterator1(s):
yield f(s)
yield from f(s)
print('warmed up!')

def generiterator2(s):
while s:

yield f(s)
yield iter(s[0])
s = s[1:]

print('generiterating complete!')

g_str = generiterator1(['i', '<3', '61a', '!'])
g_num = generiterator2([[1], [1, 2], [1, 2, 3]])

What Would Python Display? Write the output displayed by evaluating each expression below. If an error
occurs, write "Error", but include all output displayed before the error. If evaluation would run forever, write
"Forever". To display an iterator object, write "Iterator". To display a generator object, write "Generator".

Assume the expressions are evaluated in order in the same interactive session, and so evaluating an earlier
expression may affect the result of a later one.

Hint 1: Draw it out!

Hint 2: When a string is passed into print, no quotation marks are displayed. When a string is the value of
an expression evaluated by the interpreter, quotation marks are displayed. A list of strings always displays
quotation marks.

(a) (5.0 points) Jester

i. (1.0 pt) next(g_str)

Generator

Exam generated for <EMAILADDRESS> 4

ii. (1.0 pt) next(g_str)

'i'

iii. (1.0 pt) next_next(g_str)

3< 'a16'

iv. (2.0 pt) next_next(g_str)

!
warmed up!
Error

Exam generated for <EMAILADDRESS> 5

(b) (7.0 points) Genome

i. (1.0 pt) list(next(g_num))

[[1], [2, 1], [3, 2, 1]]

ii. (2.0 pt) next_next(next(g_num))

1
Error

iii. (2.0 pt) next_next(next(g_num))

[2, 1]
[3, 2, 1]

iv. (2.0 pt) len(list(g_num))

generiterating complete!
3

Exam generated for <EMAILADDRESS> 6

2. (8.0 points) Conveyor Belt

Draw the environment diagram for the code below using box and pointer notation and then answer the questions
that follow. Your diagram will not be graded.

Hint: If you pass an argument into pop, it uses the argument as the index of the element to remove. If you do
not pass an argument into pop, it defaults to popping the last element.

def conveyor_belt(s):
k = -1
while s[k]:

k = s[0].pop(chain_pop(s[0]))
s = s[k:]
if s[0] == box:

s.append(box or s.append(box))
else:

s.append(s.extend(s[:1]))
return s

def chain_pop(s):
return s.pop(s.pop(s.pop()))

box = [1, 1, 0, 0]

result = conveyor_belt([box, box[:]])

Blank Space for Diagram:

Exam generated for <EMAILADDRESS> 7

(a) (4.0 pt) What would be displayed by evaluating print(result) in the Global frame?

[[], None, [], None]

(b) (0.5 pt) What is the result of evaluating box in result in the Global frame?

 True

False

(c) (0.5 pt) What is the result of evaluating [] in result in the Global frame?

 True

False

(d) (0.5 pt) What is the result of evaluating None in result in the Global frame?

 True

False

(e) (0.5 pt) What is the result of evaluating result[0] == result[1] in the Global frame?

True

 False

Error

(f) (0.5 pt) What is the result of evaluating result[0] is result[1] in the Global frame?

True

 False

Error

(g) (0.5 pt) What is the result of evaluating result[0] == result[2] in the Global frame?

 True

False

Error

(h) (0.5 pt) What is the result of evaluating result[0] is result[2] in the Global frame?

True

 False

Error

(i) (0.5 pt) What is the result of evaluating not result[0] in the Global frame?

 True

False

Error

Exam generated for <EMAILADDRESS> 8

3. (4.0 points) Tree Sum

Laryn, Charlotte, and Raymond are working together on a CS 61A problem, but they can’t agree on a solution.
Help them determine which implementation(s) are correct, if any.

tree_sum is a function that takes in a tree t and a one-argument function cond and returns the sum of all the
labels, x, in t for which cond(x) returns True.

>>> t2 = tree(5, [tree(6), tree(7)])
>>> t1 = tree(3, [tree(4), t2])
>>> tree_sum(t1, lambda x: x >= 4)
22
>>> tree_sum(t1, lambda x: x >= 6)
13
>>> tree_sum(t2, lambda x: x >= 6)
13

Attempt 1
def tree_sum1(t, cond):

if cond(label(t)):
total = label(t)

else:
total = 0

for b in branches(t):
if cond(label(b)):

total += tree_sum1(b, cond)
return total

###

Attempt 2
def tree_sum2(t, cond):

if cond(label(t)):
total = label(t)

else:
total = 0

for b in branches(t):
total += tree_sum2(b, cond)

return total

###

Attempt 3
def tree_sum3(t, cond):

total = label(t)
for b in branches(t):

if cond(label(b)):
total += tree_sum3(b, cond)

return total

(a) (4.0 pt) Which implementation(s) are correct, if any? Select all that apply.

2 tree_sum1 is correct

� tree_sum2 is correct

2 tree_sum3 is correct

2 tree_sum1, tree_sum2, and tree_sum3 are all incorrect

Exam generated for <EMAILADDRESS> 9

4. (17.0 points) Add Consecutive

Implement add_consecutive, a function that takes in a positive integer n and returns a list of integers. Each
element of the returned list is the sum of adjacent consecutive digits in n. Two digits are adjacent if they are
directly beside each other. Two digits are consecutive if the absolute difference between them is exactly 1. Two
of the same digit are not considered consecutive.

You may not use str or repr or [or] or for.

(a) (9.0 points) Iterative Add Consecutive

Implement add_consecutive iteratively.

def add_consecutive(n):
"""
>>> add_consecutive(123456789)
[45]
>>> add_consecutive(567231) # [5 + 6 + 7, 2 + 3, 1]
[18, 5, 1]
>>> add_consecutive(111) # repeated digits are not consecutive
[1, 1, 1]
>>> add_consecutive(1235689)
[6, 11, 17]
>>> add_consecutive(3216598)
[6, 11, 17]
>>> add_consecutive(13579)
[1, 3, 5, 7, 9]
>>> add_consecutive(12321) # [1 + 2 + 3 + 2 + 1]
[9]
>>> add_consecutive(4)
[4]
>>> add_consecutive(105)
[1, 5]
>>> add_consecutive(135797531)
[1, 3, 5, 7, 9, 7, 5, 3, 1]
"""
result = []

subtotal = 0

while __________:
(a)

rest, last = n // 10, n % 10

subtotal = __________
(b)

if __________:
(c)

result = __________
(d)

subtotal = __________
(e)

n = rest

result = __________
(f)

return result

Exam generated for <EMAILADDRESS> 10

i. (2.0 pt) Select all of the expressions below that could fill in blank (a).

2 n

2 n > 0

2 n >= 0

2 n != 0

2 n > 10

� n >= 10

� n > 9

2 n >= 9

� n // 10

2 n % 10

ii. (1.0 pt) Fill in blank (b).

subtotal + last

iii. (2.0 pt) Fill in blank (c).

abs((rest % 10) - last) != 1

iv. (1.0 pt) Fill in blank (d).

[subtotal] + result

v. (1.0 pt) Select all of the expressions below that could fill in blank (e).

� 0

2 rest

2 last

2 n

2 subtotal

2 subtotal + rest

2 subtotal + last

2 subtotal + n

vi. (2.0 pt) Fill in blank (f).

[subtotal + n] + result

Exam generated for <EMAILADDRESS> 11

(b) (8.0 points) Recursive Add Consecutive

Implement add_consecutive recursively.

def add_consecutive(n):
"""
>>> add_consecutive(123456789)
[45]
>>> add_consecutive(567231) # [5 + 6 + 7, 2 + 3, 1]
[18, 5, 1]
>>> add_consecutive(111) # repeated digits are not consecutive
[1, 1, 1]
>>> add_consecutive(1235689)
[6, 11, 17]
>>> add_consecutive(3216598)
[6, 11, 17]
>>> add_consecutive(13579)
[1, 3, 5, 7, 9]
>>> add_consecutive(12321) # [1 + 2 + 3 + 2 + 1]
[9]
>>> add_consecutive(4)
[4]
>>> add_consecutive(105)
[1, 5]
>>> add_consecutive(135797531)
[1, 3, 5, 7, 9, 7, 5, 3, 1]
"""
def helper(n, subtotal):

rest, last = n // 10, n % 10

subtotal = __________
(a)

if __________:
(b)

return __________
(c)

if __________:
(d)

return helper(__________)
(e)

else:
return __________

(f)
return helper(n, __________)

(g)

Exam generated for <EMAILADDRESS> 12

i. (1.0 pt) Select all of the expressions below that could fill in blank (a).

2 0

2 rest

2 last

2 n

2 subtotal

2 subtotal + rest

� subtotal + last

2 subtotal + n

ii. (1.0 pt) Fill in blank (b).

n < 10

iii. (1.0 pt) Fill in blank (c).

[subtotal]

iv. (1.0 pt) Fill in blank (d).

abs((rest % 10) - last) == 1

v. (1.0 pt) Fill in blank (e).

rest, subtotal

vi. (2.0 pt) Fill in blank (f).

helper(rest, 0) + [subtotal]

vii. (1.0 pt) Fill in blank (g).

0

Exam generated for <EMAILADDRESS> 13

5. (7.0 points) Combine Tree

Implement combine_tree, a function that takes in a tree t and a two-argument function f and returns a new
tree where the label of any node b is the result of calling f on the labels of all the nodes in the subtree rooted
at b (including the label of b itself).

You may assume that f is an associative function. That is, f(x, y) == f(y, x) for all x and y.

def combine_tree(t, f):
"""
>>> from operator import add, mul
>>> t = tree(1, [tree(2), tree(3, [tree(4), tree(5), tree(6)])])
>>> sum_tree = combine_tree(t, add)
>>> print_tree(sum_tree)
21

2
18

4
5
6

>>> product_tree = combine_tree(t, mul)
>>> print_tree(product_tree)
720

2
360

4
5
6

>>> max_tree = combine_tree(t, max)
>>> print_tree(max_tree)
6

2
6

4
5
6

"""
if is_leaf(t):

return __________
(a)

total = __________
(b)

new_branches = []

for b in branches(t):

new_b = __________
(c)

new_branches.append(new_b)

total = __________
(d)

return tree(total, new_branches)

Exam generated for <EMAILADDRESS> 14

(a) (1.0 pt) Fill in blank (a).

 t

label(t)

0

1

(b) (1.0 pt) Select all of the expressions below that could fill in blank (b).

2 t

� label(t)

2 0

2 1

2 f(label(t))

2 f(label(t), label(t))

2 f(0, label(t))

2 f(1, label(t))

2 combine_tree(t, f)

2 f(sum([combine_tree(b, f) for b in branches(t)]), label(t))

2 sum(map(f, [combine_tree(b, f) for b in branches(t)]))

(c) (2.0 pt) Fill in blank (c).

t

b

f(t)

f(b)

f(label(t))

f(label(b))

f(label(t), label(b))

f(label(b), label(t))

combine_tree(t, f)

 combine_tree(b, f)

(d) (3.0 pt) Fill in blank (d).

f(total, label(new_b))

Exam generated for <EMAILADDRESS> 15

6. (11.0 points) Multi Compose

Implement multi_compose, a function that takes in a list of functions and two integers x and y. It returns a
composite function that on input x outputs y by applying a subsequence of functions in the input list. Functions
can only be applied in the order in which they appear in the list. That is, the ith-indexed function must be
applied before the i+1th-indexed function. Each function can be used 0 or 1 times.

If no such composite function exists, return None. If more than one such composite function exists, return any
one of them.

You may assume x != y. Your solution must use safe_compose, which composes two functions together when
called with two functions as arguments and returns None when called with None as an argument.

def safe_compose(f, g):
"""
>>> composed = safe_compose(lambda x: x + 1, lambda x: x * 2)
>>> composed(5)
11
>>> safe_compose(lambda x: x, None) is None and safe_compose(None, lambda x: x) is None
True
"""
if f is None or g is None:

return None
def composed(x):

return f(g(x))
return composed

def multi_compose(funcs, x, y):
"""
>>> add_one, double = lambda x: x + 1, lambda x: x * 2
>>> sub_three, square = lambda x: x - 3, lambda x: x ** 2
>>> list_of_funcs = [add_one, double, sub_three, square]
>>> double_then_square = multi_compose(list_of_funcs, 3, 36)
>>> double_then_square
Function
>>> double_then_square(1) # (1 * 2) ** 2 --> 4
4
>>> square_then_double = multi_compose(list_of_funcs, 3, 18)
>>> square_then_double # None
>>> all_funcs = multi_compose(list_of_funcs, 3, 25)
>>> all_funcs(1) # (((1 + 1) * 2) - 3) ** 2 --> 1
1
>>> double = multi_compose(list_of_funcs, 50, 100)
>>> double(1) # 1 * 2 --> 2
2
>>> sub_two = multi_compose(list_of_funcs, 50, 48)
>>> sub_two(2) # 2 - 2 --> 0
0
>>> double_then_sub = multi_compose(list_of_funcs, 50, 97)
>>> double_then_sub(1) # (1 * 2) - 3 --> -1
-1
>>> negate = multi_compose(list_of_funcs, 100, -100)
>>> negate # None
"""

Exam generated for <EMAILADDRESS> 16

if x == y:
return lambda x: __________

(a)
if __________:

(b)
return None

return __________ or multi_compose(__________)
(c) (d)

(a) (2.0 pt) Fill in blank (a).

x

(b) (1.0 pt) Fill in blank (b).

not funcs

(c) (6.0 pt) Fill in blank (c).

safe_compose(multi_compose(funcs[1:], funcs[0](x), y), funcs[0])

(d) (2.0 pt) Fill in blank (d).

funcs[1:], x, y

Exam generated for <EMAILADDRESS> 17

7. (5.0 points) Memoized Fibonacci Tree

Recall the Fibonacci sequence from lecture. It is defined as follows:

0 if n == 0
fib(n) = 1 if n == 1

fib(n - 1) + fib(n - 2) else

A Fibonacci Tree is a tree where each label is a Fibonacci number and each non-leaf node has exactly two
children: the two Fibonacci numbers that appear directly before it in the Fibonacci sequence.

The fib_tree function below takes in a nonnegative integer n and returns a Fibonacci Tree that has root label
fib(n). Implement fib_tree_memo, a memoized version of fib_tree.

def fib_tree(n):
"""
>>> print_tree(fib_tree(5))
5

2
1
1

0
1

3
1

0
1

2
1
1

0
1

"""
IMPLEMENTATION OMITTED

Here is a visual indicating how the call diagram of fib_tree should change once you memoize it in fib_tree_memo.

Exam generated for <EMAILADDRESS> 18

def fib_tree_memo(n):
"""
>>> print_tree(fib_tree_memo(5))
5

2
1
1

0
1

3
1
2

"""
def helper(n, cache):

if __________:
(a)

return tree(__________)
(b)

if n <= 1:

return tree(n)

b0, b1 = helper(n - 2, cache), helper(n - 1, cache)

fib_num = __________
(d)

__________ = fib_num
(e)

return tree(fib_num, [b0, b1])

return helper(n, {})

(a) (1.0 pt) Fill in blank (a).

n in cache

(b) (1.0 pt) Fill in blank (b).

cache[n]

(c) (1.0 pt) Fill in blank (d).

label(b0) + label(b1)

(d) (1.0 pt) Fill in blank (e).

cache[n]

Exam generated for <EMAILADDRESS> 19

(e) (1.0 pt) What is the order of growth of the run time of fib_tree_memo with respect to n?

Constant, Θ(1), O(1)

Logarithmic, Θ(log n), O(log n)

 Linear, Θ(n), O(n)

Quadratic, Θ(n2), O(n2)

Exponential, Θ(bn), O(bn)

Exam generated for <EMAILADDRESS> 20

8. (0.0 points) Just for Fun

This is not for points and will not be graded.

(a) Optional: Draw your favorite spot on campus!

Exam generated for <EMAILADDRESS> 21

No more questions.

