
CS 61A Structure and Interpretation of Computer Programs
Summer 2021 Midterm

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) By writing my name below, I pledge on my honor that I will abide by the rules of this exam and will neither
give nor receive assistance. I understand that doing otherwise would be a disservice to my classmates,
dishonor me, and could result in me failing the class.

Exam generated for <EMAILADDRESS> 3

1. Breath of the Environment

(a) The following environment diagram was generated by a program:

Click here to open the diagram in a new window

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches
the environment diagram.

def breath(of, the):
def wild(daruk):

of.extend(______(a)______)
____(b)_____(____(c)_______)

return wild

daruk = [0, 1]
zelda = [3, daruk]
breath(zelda, _________(d)_________)(3)

https://i.postimg.cc/CKVZXkVQ/su21-env.png

Exam generated for <EMAILADDRESS> 4

i. Which of these could fill in blank (a)? Select all that apply!

2 zelda[1]

2 daruk

2 daruk[1]

2 of[1]

2 of[1:]

2 [1, 3]

2 zelda

ii. Which of these could fill in blank (b)?

breath

(lambda x: zelda[1].extend([daruk]))

daruk

wild

the

zelda

(lambda x: x)(3)

iii. Which of these could fill in blank (c)? Select all that apply!

2 3

2 (lambda x: x)(3)

2 zelda[0]

2 zelda.pop(0)

2 zelda.append(3)

2 of[0]

2 daruk

iv. Which of these could fill in blank (d)?

lambda x: None

[z + 1 for z in daruk]

lambda x: zelda[1].append(x)

lambda x: zelda[1].extend([daruk])

the(daruk)

lambda x: zelda[1] + [3]

Exam generated for <EMAILADDRESS> 5

2. LIST-en Up!

(a) Order in the Court!

Write a function order_order which takes a non-empty list of 2-argument functions operators and returns
a new 2-argument function. When called, this returned function should print the result of applying the
first function in operators to the two parameters passed in. It should then return another function that
applies the second function in operators to the parameters, and so on. When the returned function has
called the last function in the operators list, it should cycle back to the beginning of the list and use the
first function again on the next call.

See the doctest for an example.

def order_order(operators):
"""
>>> from operator import add, mul, sub
>>> ops = [add, mul, sub]
>>> order = order_order(ops)
>>> order = order(1, 2) # applies add and returns mul
3
>>> order = order(1, 2) # applies mul and returns sub
2
>>> order = order(1, 2) # applies sub and cycles back to return add
-1
>>> order = order(1, 2) # cycles back to applying add
3
>>> order = order(1, 2)
2
>>> order = order(1, 2)
-1
"""
def apply(x, y):

print(________________)
(a)
return order_order(________________)
(b)

return __________________
(c)

i. What line of code could go in blank (a)?

ii. What line of code could go in blank (b)?

iii. What line of code could go in blank (c)?

Exam generated for <EMAILADDRESS> 6

(b) Skipping Around

A skip list is defined as a sublist of a list such that each element in the sublist is non adjacent in the
original list. For original list [5, 6, 8, 2], the lists [5, 8], [5, 2], [6, 2], [5], [6], [8], [2], [] are
all skip lists of the original list. The empty list is always a skip list of any list.

Given a list int_lst of unique integers, return a list of all unique skip lists of int_lst where each skip
list contains integers in strictly increasing order. The order in which the skip lists are returned
does not matter.

def list_skipper(int_lst):
"""
>>> list_skipper([5,6,8,2])
[[5, 8], [5], [6], [8], [2], []]
>>> list_skipper([1,2,3,4,5])
[[1, 3, 5], [1, 3], [1, 4], [1, 5], [1], [2, 4], [2, 5], [2], [3, 5], [3], [4], [5], []]
>>> list_skipper([])
[[]]
"""
if len(int_lst) == 0:

return ________________
(a)

with_first = ___________________
(b)

without_first = ____________________
(c)

with_first = [_________ for x in with_first if x == [] or ____________]
(d) (e)

return with_first + without_first

i. What line of code could go in blank (a)?

ii. Which of these could fill in blank (b)?

list_skipper(int_lst)

list_skipper(int_lst[1:])

list_skipper(int_lst[2:])

list_skipper(int_lst[0])

list_skipper(int_lst[:-1])

iii. What line of code could go in blank (c)?

Exam generated for <EMAILADDRESS> 7

iv. Which of these could fill in blank (d)?

x

x[0]

[x[0]] + int_lst

[int_lst[0]] + x

int_lst.append(x)

x.append(int_lst)

v. Which of these could fill in blank (e)?

x[0] < int_lst[0]

x < int_lst[0]

x[0] > int_lst[0]

x > int_lst[0]

x[0] == int_lst[1]

len(x) < len(int_lst)

Exam generated for <EMAILADDRESS> 8

3. Growing Up

(a) Examine the mystery1 function below which takes in a single positive integer parameter n:

def mystery1(n):
i = 1
total = 0
while i <= n:

if len([j for j in range(2, n + 1) if i % j == 0]) > 1:
total = total + 1

i = i + 1
return total

i. Select the option indicating the worst-case order of growth of the runtime of mystery1.

Constant: O(1)

Logarithmic: O(log2n)

Linear: O(n)

Quadratic: O(n2)

Exponential: O(2n)

Exam generated for <EMAILADDRESS> 9

(b) Assume that there exists a mystery2 function which takes in a single positive integer parameter n. The
below graph compares n to the worst-case time it takes to evaluate mystery2(n).

You may assume that mystery2(n)’s runtime follows a similar trend for all values of n.

i. Select the option best matching the worst-case order of growth of the runtime of mystery2.

Constant: O(1)

Logarithmic: O(log2n)

Linear: O(n)

Quadratic: O(n2)

Exponential: O(2n)

Exam generated for <EMAILADDRESS> 10

4. Maximum Exponen-tree-ation

(a) For a list of integers values, define the maximum exponentiation of values to be the largest single
number that can be achieved by repeatedly combining pairs of consecutive elements from values through
exponentiation. Two possible exponentiations for the list [3, 1, 2, 3] are shown below:

(3 ** 1) ** (2 ** 3) = 6561
(3 ** (1 ** 2)) ** 3 = 27

Of all the exponentiations of [3, 1, 2, 3], the maximum exponentiation is 6561, which can be calculated
through the below steps:

[3, 1, 2, 3]
[3 ** 1, 2, 3]
[3, 2, 3]
[3, 2 ** 3]
[3, 8]
[3 ** 8]
6561

Implement exp_tree, which accepts a non-empty list of integers values and returns a tree whose label is
the maximum exponentiation of values. Given that the maximum exponentiation is b ** n for some two
integers b and n, the two branches of this tree should be the exp_trees of the sublists of values used to
exponentiate to b and n, respectively. You may assume that values has a unique exponentiation tree.

For example, below is a drawing of the exp_tree for values = [3, 1, 2, 3]:

The function should assume the standard CS61A Tree ADT definition, which is already loaded into
code.cs61a.org, and is viewable here: code.cs61a.org/tree_adt

Note: Exponentials in Python are expressed as base ** exponent.

def exp_tree(values):
"""
Returns the exponential tree that can be made from VALUES
with the greatest possible root label

>>> print_tree(exp_tree([5]))
5
>>> print_tree(exp_tree([3, 2]))
9

3
2

>>> print_tree(exp_tree([2, 3, 2]))
512

2
9

3
2

>>> lst = [3, 1, 2, 3]

https://code.cs61a.org/tree_adt

Exam generated for <EMAILADDRESS> 11

>>> print_tree(exp_tree(lst))
6561

3
3
1

8
2
3

"""
if __________:

(a)
return __________

(b)
else:

def tree_at_split(i):
base = exp_tree(__________)

(c)
exponent = exp_tree(__________)

(d)
return tree(__________, [base, exponent])

(e)
trees = [tree_at_split(i) for i in range(1, len(values))]
return max(trees, key=__________)

(f)

i. Which of these could fill in blank (a)?

len(values) == 0

len(values) == 1

values

len(values) == 2

values[0] < values[1]

len(values) <= 2

len(values) <= 3

ii. Which of these could fill in blank (b)?

0

tree(0)

values[0]

tree(values[0])

values[1]

tree(values[1])

values[0] ** values[1]

tree(values[0] ** values[1])

values[1] ** values[0]

tree(values[1] ** values[0])

Exam generated for <EMAILADDRESS> 12

iii. What line of code could go in blank (c)?

iv. What line of code could go in blank (d)?

v. What line of code could go in blank (e)?

vi. What line of code could go in blank (f)?

Exam generated for <EMAILADDRESS> 13

5. You’ve Seen it All

(a) Wait ‘til You See What’s in Store

Implement memory_store, a function that will return two functions: add_val and times_seen. When
called on a number var1, times_seen will return the number of times add_val has been called on that
particular value var1.

def memory_store():
"""
>>> add_val, times_seen = memory_store()
>>> add_val(4)
>>> for _ in range(3):
... add_val(3)
>>> times_seen(3)
3
>>> times_seen(4)
1
>>> times_seen(2)
0
>>> add_val(3)
>>> times_seen(3)
4
"""
memory = {}
def add_val(var1):

if var1 in memory:

(a)

else:

(b)

def times_seen(var1):
return _________________
(c)

return add_val, times_seen

i. Which of these could fill in blank (a)?

memory[var1] = 0

memory[var1] = var1

memory.append(var1)

memory[var1] = memory[var1] + 1

return memory[var1]

return memory[0]

return memory.get(var1, 0)

ii. What line of code could go in blank (b)?

Exam generated for <EMAILADDRESS> 14

iii. What line of code could go in blank (c)?

Exam generated for <EMAILADDRESS> 15

(b) XKSeenD

Definition: A repeatable function is a function that returns another repeatable function, which also
returns a repeatable function, and so on infinitely.

Implement the function add_seen_d, which takes in an integer d and returns a repeatable function inner.

When inner is called on an integer innervar, it prints the sum of all integers that have been passed to
inner at least d times so far among the repeated calls.

You will need to implement the helper function make_seen_function, which returns a seen function. A
seen function is a function that takes in a value and returns the number of times the number has been seen
already.

You may not use lists, dictionaries, or the function defined in 4.1 in this part.

initial_seen = lambda x: 0
def add_seen_d(d, seen_fn=initial_seen, total=0):

"""
>>> a = add_seen_d(2)
>>> a = a(3)
0
>>> a = a(4)
0
>>> a = a(3) # 3 seen for the 2nd time, thus added
3
>>> a = a(3) # 3 seen for the 3rd time, and won't be added again
3
>>> a = a(4) # 4 seen for the 2nd time, thus added
7
>>> a = a(5) # 5 is seen for the 1st time, so not added
7
"""
def inner(innervar):

new_seen = __________________________
(a)

if new_seen(innervar) == d:
print(__________________________)

(b)
return __________________________

(c)
else:

print(__________________________)
(d)

return add_seen_d(d, new_seen, total)
return inner

def make_seen_function(f, msvar):
def seen(seenvar):

if msvar == seenvar:
return __________________________

(e)
return __________________________

(f)
return seen

Exam generated for <EMAILADDRESS> 16

i. Which of these could fill in blank (a)?

seen_fn

lambda x: seen_fn(x) + 1

make_seen_function(seen_fn, d)

make_seen_function(seen_fn, innervar)

make_seen_function(lambda x: seen_fn(x) + 1, d)

make_seen_function(lambda x: seen_fn(x) + 1, innervar)

ii. What line of code could go in blank (b)?

(You may not use lists, dictionaries, or the function defined in 4.1 in this part)

iii. What line of code could go in blank (c)?

(You may not use lists, dictionaries, or the function defined in 4.1 in this part)

iv. What line of code could go in blank (d)?

(You may not use lists, dictionaries, or the function defined in 4.1 in this part)

v. Which of these could fill in blank (e)? Select all that apply!

2 f(msvar)

2 f(seenvar)

2 1 + f(msvar)

2 1 + f(seenvar)

2 f(msvar) + f(seenvar)

2 f(seenvar) - msvar

vi. What line of code could go in blank (f)?

(You may not use lists, dictionaries, or the function defined in 4.1 in this part)

Exam generated for <EMAILADDRESS> 17

No more questions.

