
CS 61A Structure and Interpretation of Computer Programs
Spring 2024 Final Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Sign (or type) your name to confirm that all work on this exam will be your own. The penalty for academic
misconduct on an exam is an F in the course.

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) What Would Python Display?

Assume the following code has been executed. No error occurs.

s = [2, 4]
t, u = [2, 0, s], [2, 0, s]
t.append(5)
u[2].extend(s)
v = t[2]
t[2] = [6, 7]

Write the output printed for each expression below. Hint: Draw an environment diagram!

(a) (0.5 pt) print(s is u)

True

 False

(b) (0.5 pt) print(s is v)

 True

False

(c) (0.5 pt) print(s is u[2])

 True

False

(d) (0.5 pt) print(s is t[2])

True

 False

(e) (2.0 pt) print(t)

[2, 0, [6, 7], 5]

(f) (2.0 pt) print(u)

[2, 0, [2, 4, 2, 4]]

Exam generated for <EMAILADDRESS> 4

2. (9.0 points) Only Up

Definition: The increasing sublist of a sequence of numbers s is a list containing each element of s that is
larger than all previous elements.

(a) (4.0 points)

Implement up, which takes a list of numbers s and returns its increasing sublist.

def up(s):
"""Return the increasing sublist of list s.

>>> up([3, 1, 2, 5, 4, 5, 7, 6, 12, 11])
[3, 5, 7, 12]
"""
result = _______

(a)
for x in s:

if _______:
(b)

result._______(x)
(c)

return result

i. (1.0 pt) Fill in blank (a).

 []

[[]]

[s]

[s[0]]

None

ii. (2.0 pt) Fill in blank (b).

result and s[0] < x

result and result[-1] < x

result or s[0] < x

result or result[-1] < x

not result and s[0] < x

not result and result[-1] < x

not result or s[0] < x

 not result or result[-1] < x

iii. (1.0 pt) Fill in blank (c).

 append

extend

pop

list

Exam generated for <EMAILADDRESS> 5

(b) (5.0 points)

Implement upiter, which takes a finite iterator over numbers t and returns its increasing sublist. You
may not call up in upiter.

def upiter(t):
"""Return the increasing sublist of iterator t.

>>> upiter(iter([3, 1, 2, 5, 4, 5, 7, 6, 12, 11]))
[3, 5, 7, 12]
"""
try:

x = next(t)
except StopIteration:

(d)

return _______ + _______ (filter(_______ , t))
(e) (f) (g)

i. (1.0 pt) Fill in blank (d).

return t

 return []

return None

x = t

x = []

x = None

ii. (1.0 pt) Fill in blank (e).

x

next(t)

 [x]

[next(t)]

[x, next(t)]

iii. (1.0 pt) Fill in blank (f).

max

list

iter

next

 upiter

iv. (2.0 pt) Fill in blank (g). You may not call up.

lambda y: y > x

Exam generated for <EMAILADDRESS> 6

3. (26.0 points) Dominos

A domino is a tile with two numbers, such as 3-4. A 3-4 domino can be flipped around so that it is now a 4-3
domino.

(a) (8.0 points)

Implement the Domino class. A Domino instance is constructed from a two-element list of non-negative
integers below 10 that is stored as an instance attribute ns. The align method takes an integer first
which must be one of the numbers in ns. It returns the same domino instance on which it was invoked,
but first mutates it so that first comes first in ns. A Domino([3, 4]) is displayed as 3-4.

class Domino:
"""A Domino has two numbers and can be aligned to place one of them first.

>>> d = Domino([3, 4])
>>> original = d
>>> d.align(3)
3-4
>>> d.align(4)
4-3
>>> d is original # No new Domino instance was created
True
>>> d # A Domino's order is changed by align
4-3
"""
def __init__(self, ns):

assert len(ns) == 2 and ns[0] in range(10) and ns[1] in range(10)
self.ns = ns

def align(self, first):
assert _______, 'first must be a number on the domino.'

(a)
if _______:

(b)

(c)
return _______

(d)

def __repr__(self):
return _______

(e)

i. (2.0 pt) Fill in blank (a). Select all that apply.

2 first == self.ns

2 [first] == self.ns

2 first == self.ns[0] or self.ns[1]

� first in self.ns

2 self.first == self.ns

2 [self.first] == self.ns

2 self.first == self.ns[0] or self.ns[1]

2 self.first in self.ns

Exam generated for <EMAILADDRESS> 7

ii. (1.0 pt) Fill in blank (b).

first == self.ns[0]

 first != self.ns[0]

self.first == self.ns[0]

self.first != self.ns[0]

iii. (3.0 pt) Fill in blank (c).

self.ns = [self.ns[1], self.ns[0]]

iv. (1.0 pt) Fill in blank (d).

Domino

Domino(self.ns)

Domino([self.ns])

 self

self.ns

repr(self)

repr(self.ns)

v. (1.0 pt) Fill in blank (e).

str(self)

str(self.ns)

ns[0] + '-' + ns[1]

self.ns[0] + '-' + self.ns[1]

str(self.ns[0] + '-' + self.ns[1])

 str(self.ns[0]) + '-' + str(self.ns[1])

Exam generated for <EMAILADDRESS> 8

(b) (4.0 points)

Implement drop, which takes a Domino instance d and a list of Domino instances ds. It returns a new list
with all of the elements of ds except for d.

def drop(d, ds):
"""Return a new list of dominos with all elements of ds except d.

>>> ds = [Domino(ns) for ns in [[5, 2], [3, 4], [5, 5], [3, 4]]]
>>> drop(ds[1], ds)
[5-2, 5-5, 3-4]
>>> drop(ds[3], ds)
[5-2, 3-4, 5-5]
>>> ds
[5-2, 3-4, 5-5, 3-4]
"""
return _______

(f)

i. (2.0 pt) Fill in blank (f).

[x for x in ds if x is not d]

ii. (2.0 pt)What is the value of drop(ds[2], drop(ds[1].align(4), ds)) assuming drop and Domino
are defined correctly and ds is assigned to:

ds = [Domino(ns) for ns in [[5, 2], [3, 4], [5, 5], [4, 3]]]

[5-2]

[5-2, 3-4]

 [5-2, 4-3]

[5-2, 5-5]

[5-2, 3-4, 5-5]

[5-2, 4-3, 5-5]

[5-2, 5-5, 4-3]

[5-2, 3-4, 5-5, 4-3]

[5-2, 4-3, 5-5, 4-3]

Exam generated for <EMAILADDRESS> 9

(c) (10.0 points)

Definition: A line of Dominos is a sequence of dominos in which pairs of adjacent numbers on different
dominos are equal, such as 2-4 4-3 3-3 3-6.

Implement longest, which takes a list of Domino instances ds. It returns a string that describes the longest
line of dominos that can be formed from ds. This result should contain domino repr strings separated by
spaces, such as '2-4 4-3 3-3 3-6'. The dominos described in the result can appear in any order and
may be flipped using the align method. If more than one line is longest, describe any of the longest lines.
You may call drop.

def longest(ds):
"""Return a string describing the longest line that can be formed from dominos in ds.

>>> ds = [Domino(ns) for ns in [[5, 2], [3, 4], [5, 5], [6, 1], [3, 2]]]
>>> print(longest(ds))
4-3 3-2 2-5 5-5

>>> ds = [Domino(ns) for ns in [[1, 2],[1, 2],[3, 2],[3, 2],[3, 2],[4, 3],[4, 3],[4, 3],[6,5]]]
>>> print(longest(ds))
2-1 1-2 2-3 3-2 2-3 3-4 4-3 3-4
"""
def finish(first, rest):

s = [_______ + ' ' + finish(_______ , _______) for d in rest if _______]
(g) (h) (i) (j)

if not s:

return _______
(k)

return max(s, key=_______)
(l)

candidates = []
for first in ds:

candidates.append(finish(first, drop(first, ds)))
candidates.append(finish(first.align(first.ns[1]), drop(first, ds)))

return max(candidates, key=_______)
(m)

i. (1.0 pt) Fill in blank (g).

d

first

rest[0]

repr(d)

 repr(first)

repr(rest[0])

Exam generated for <EMAILADDRESS> 10

ii. (3.0 pt) Fill in blank (h).

d.align(first.ns[1])

iii. (1.0 pt) Fill in blank (i).

rest

rest[1:]

 drop(d, rest)

drop(first, rest)

iv. (2.0 pt) Fill in blank (j).

first.ns[1] in d.ns

v. (2.0 pt) Fill in blank (k).

''

None

first

 repr(first)

max(rest)

repr(max(rest))

longest(ds[1:])

vi. (1.0 pt) Fill in blanks (l) and (m) with the same expression. Numbers on a domino must be below 10.

 len

max

str

repr

lambda s: s

lambda s: s[0]

lambda s: len(s[0])

Exam generated for <EMAILADDRESS> 11

(d) (4.0 points)

The Domino table has one row per domino that gives its unique id (number) and the numbers appearing
on the domino m and n (numbers).

CREATE TABLE dominos AS
SELECT 0 AS id, 3 AS m, 2 AS n UNION
SELECT 1 , 3 , 1 UNION
SELECT 2 , 6 , 3 UNION
SELECT 3 , 4 , 4 UNION
SELECT 4 , 3 , 2 UNION
SELECT 5 , 2 , 6;

Complete this query that creates one row per domino for which at least one other domino has a number
equal to its n value. The row contains the domino’s id, m value, n value, and the count of other dominos
that have a number equal to its n value.

SELECT a.id, a.m, a.n, COUNT(*) FROM dominos AS a, dominos AS b

WHERE _______ AND (_______)
(o) (p)

GROUP BY _______;
(q)

i. (1.0 pt) Fill in blank (o).

a.id = b.id

a.id < b.id

 a.id != b.id

ii. (2.0 pt) Fill in blank (p).

a.m = b.m OR a.n = b.n

a.m = b.m AND a.n = b.n

 a.n = b.m OR a.n = b.n

a.n = b.m AND a.n = b.n

a.m = b.n OR a.n = b.n

a.m = b.n AND a.n = b.n

iii. (1.0 pt) Fill in blank (q).

m

a.m

b.m

id

 a.id

b.id

Exam generated for <EMAILADDRESS> 12

4. (12.0 points) Merry-Go-Round

(a) (6.0 points)

Implement cycle, which takes a non-empty finite linked list s (a Link instance). It returns a linked list
in which the first Link of s has been moved to become the last Link of the result. If s has only one
element, then it is not moved. The Link class appears on Page 2 of the Midterm 2 Study Guide. A linked
list is finite if it contains a Link that has Link.empty as its rest attribute rather than having a cyclical
structure.

def cycle(s):
"""Move the first Link of a non-empty finite linked list to be the last.

>>> a = Link(3, Link(5, Link(7, Link(9)))) # <3 5 7 9>
>>> print(cycle(a))
<5 7 9 3>
>>> print(a)
<3>
"""
assert isinstance(s, Link)
if s.rest is Link.empty:

return s
last = s
while last.rest is not Link.empty:

last = last.rest
s.rest, last.rest, result = _______ , _______ , _______

(a) (b) (c)
return result

i. (2.0 pt) Fill in blank (a).

s

s.rest

last

last.rest

 Link.empty

ii. (2.0 pt) Fill in blank (b).

 s

s.rest

last

last.rest

Link.empty

Exam generated for <EMAILADDRESS> 13

iii. (2.0 pt) Fill in blank (c).

s

 s.rest

last

last.rest

Link.empty

Exam generated for <EMAILADDRESS> 14

(b) (6.0 points)

Implement repeat, a generator function that takes a non-empty finite linked list s and a positive integer k.
It yields k elements from s, restarting from the first element of s each time the end is reached. It is ok to
mutate s. You may call cycle.

def repeat(s, k):
"""Yield k items from a non-empty finite linked list, starting over as needed.
It is ok to mutate s in the process.

>>> t = repeat(Link(4, Link(2, Link(6))), 10)
>>> [next(t), next(t), next(t), next(t)]
[4, 2, 6, 4]
>>> list(t) # 6 of the 10 elements remain
[2, 6, 4, 2, 6, 4]
"""
for x in _______:

(d)
yield _______

(e)

(f)

i. (2.0 pt) Fill in blank (d).

s

iter(s)

next(s)

 range(k)

range(s)

range(len(s))

ii. (2.0 pt) Fill in blank (e).

s

 s.first

s.rest.first

from repeat(s.rest, k-1)

x

s[x]

s[x % len(s)]

iii. (2.0 pt) Fill in blank (f).

cycle(s)

 s = cycle(s)

cycle(s.rest)

s = cycle(s.rest)

s.rest = cycle(s.rest)

Exam generated for <EMAILADDRESS> 15

5. (11.0 points) Trees

(a) (4.0 points)

Implement count_ones, which takes a Tree instance t. It returns the number of nodes in t that have one
child. The Tree class is defined on Page 2 of the Midterm 2 study guide.

def count_ones(t):
"""Return the number of nodes that have one child.

>>> count_ones(Tree(1, [Tree(2), Tree(3, [Tree(4)])]))
1
>>> count_ones(Tree(1, [Tree(2), Tree(3), Tree(4)]))
0
>>> count_ones(Tree(1, [Tree(2, [Tree(3, [Tree(4)]), Tree(5, [Tree(6)])])]))
3
"""
count = sum([count_ones(_______) for b in t.branches if _______])

(a) (b)
if _______:

(c)
return count + 1

else:
return count

i. (1.0 pt) Fill in blank (a).

 b

t

b.branches

t.branches

ii. (1.0 pt) Fill in blank (b).

 True

is_leaf(b)

is_leaf(t)

len(b.branches) == 1

len(t.branches) == 1

iii. (2.0 pt) Fill in blank (c).

True

is_leaf(b)

is_leaf(t)

len(b.branches) == 1

 len(t.branches) == 1

all([len(b.branches) == 1 for b in t.branches])

any([len(b.branches) == 1 for b in t.branches])

Exam generated for <EMAILADDRESS> 16

(b) (7.0 points)

Implement shorten, which takes a Tree instance t. It removes all non-root nodes that have no siblings
(no other nodes with the same parent), then returns t.

def shorten(t):
"""Remove all non-root nodes with no siblings and return t.

>>> shorten(Tree(1, [Tree(2), Tree(3, [Tree(4)])]))
Tree(1, [Tree(2), Tree(3)])
>>> shorten(Tree(1, [Tree(2, [Tree(3, [Tree(4)])])]))
Tree(1)
>>> shorten(Tree(1, [Tree(2, [Tree(3), Tree(4)])]))
Tree(1, [Tree(3), Tree(4)])
>>> shorten(Tree(1, [Tree(2, [Tree(3, [Tree(4), Tree(5)]), Tree(6, [Tree(7)])])]))
Tree(1, [Tree(3, [Tree(4), Tree(5)]), Tree(6)])
"""
_______:

(d)
_______ = _______

(e) (f)
for b in t.branches:

shorten(b)
return t

i. (3.0 pt) Fill in blank (d). Include the type of the control statement you are using (if, while, for,
etc.).

while len(t.branches) == 1

ii. (1.0 pt) Fill in blank (e).

t

 t.branches

t.branches[i]

Tree(t.label, t.branches)

iii. (2.0 pt) Fill in blank (f). You may not use and, or, if, or lambda in your answer.

t.branches[0].branches

iv. (1.0 pt) What order of growth describes the time it takes to execute u = Tree(1, [t]) in terms of
the number of nodes in a Tree instance t. Assume every non-leaf node in t has two children.

 constant

logarithmic

linear

quadratic

exponential

Exam generated for <EMAILADDRESS> 17

6. (6.0 points) Scheme

A nested list of numbers is a list containing numbers and nested lists of numbers. For example: ((7 5) 3
((1)) 9)

Implement truths, which takes a nested list of numbers s and a one-argument procedure f. It returns the
count of numbers x in s for which (f x) returns a true value.

scm> (define (eight? x) (and (number? x) (= x 8)))
scm> (truths '(8 (8 ((3 8)) 8 ())) eight?)
4
scm> (truths '(8 (8 ((3 8)) 8 ())) number?)
5

Hint: The built-in number? procedure returns whether its argument is a number.

(define (truths s f)
(if (null? s) 0

(+
(if (number? (car s)) _______ (truths _______ f)) ; first argument to +

(a) (b)
_______))) ; second argument to +

(c)

(a) (3.0 pt) Fill in blank (a).

(if (f (car s)) 1 0)

(b) (1.0 pt) Fill in blank (b).

s

 (car s)

(cdr s)

(list s)

(c) (2.0 pt) Fill in blank (c).

nil

0

1

f

s

(f s)

truths

 (truths (cdr s) f)

Exam generated for <EMAILADDRESS> 18

(d) (0.0 pt) This A+ question is not worth any points. It can only affect your course grade if
you have a high A and might receive an A+. Finish the rest of the exam first!

Fill in blank (d) to implement eights, which returns the number of eights that appear in a row at the
beginning of a nested list s.

scm> (eights '(8 8 8 3 8))
3
scm> (eights '((8 (8) 8) (3) 8 ()))
3
scm> (eights '(8 (8 ((8 3 8)) 8 ())))
3
scm> (eights '(7 (8 ((3 8)) 8 ())))
0

You may call truths. The only special form you may use to fill in the blank is if.

;;; Return the number of eights at the start of a nested list of numbers s.
(define (eights s)

(cond
((null? s) 0)
((eight? (car s)) (+ 1 (eights (cdr s))))
((number? (car s)) 0)
(else (let ((k (eights (car s)))) (+ k _______)))))

(d)

(if (< k (truths (car s) number?)) 0 (eights (cdr s)))

Exam generated for <EMAILADDRESS> 19

7. (0.0 points) Tree Swap

This A+ question is not worth any points. It can only affect your course grade if you have a
high A and might receive an A+. Finish the rest of the exam first!

Implement swap, which takes a Tree instance t with unique node labels and two different values x and y that
are labels of t. It mutates the tree by placing the node labeled x in the position of the node labeled y, and the
node labeled y in the position of the node labeled x.

Hint: The built-in exec function takes a string and executes the Python statement it contains in the current
environment. For example:

>>> exec('x = 1 + 1')
>>> x
2

There are two blanks in swap, but they both contain exactly the same code, so you just need to write that code
once.

def find(t, x, s, f):
result = []
def g(t, s):

if t.label == x:
result.append(s)

for i in range(len(t.branches)):
g(t.branches[i], s + f(i))

g(t, s)
assert len(result) == 1, 'x should appear as a label exactly once'
return result[0]

def swap(t, x, y):
"""Swap the positions of the nodes labeled x and y in Tree t.

>>> n = Tree(1, [Tree(2, [Tree(3, [Tree(4)]), Tree(5)]), Tree(6, [Tree(7)])])
>>> b = n.branches[0].branches[0]
>>> b is n.branches[1]
False
>>> swap(n, 3, 6)
>>> n
Tree(1, [Tree(2, [Tree(6, [Tree(7)]), Tree(5)]), Tree(3, [Tree(4)])])
>>> b is n.branches[1]
True
"""
px = find(t, x, _______)
py = find(t, y, _______)
exec(px + ',' + py + '=' + py + ',' + px)

(a) Write the code that fills in both blanks. (The same code fills in each blank.) The find function takes four
arguments, so your answer should contain two expressions separated by a comma.

't', lambda i: '.branches[' + str(i) + ']'

Exam generated for <EMAILADDRESS> 20

8. Art Break

(a) Draw a picture or write a poem: if the 61A homework bot took on a physical form, what would it look
like?

Exam generated for <EMAILADDRESS> 21

No more questions.

