
CS 61A Structure and Interpretation of Computer Programs
Spring 2021 Final Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) By writing my name below, I pledge on my honor that I will abide by the rules of this exam and will neither
give nor receive assistance. I understand that doing otherwise would be a disservice to my classmates,
dishonor me, and could result in me failing the class.

Exam generated for <EMAILADDRESS> 3

1. (6.0 points) Link-Like Lists

Fill in each blank in the code example below so that executing it would generate the following environment
diagram on tutor.cs61a.org.

RESTRICTIONS. You must use all of the blanks. Each blank can only include one statement or expression.

Useful Information: In Python, the function call

X.__setitem__(k, Y)

is the dunder-method equivalent of

X[k] = Y

Click here to open the diagram in a new window/tab

def a(q):

f1 = lambda: _______.__setitem__(1, __________________)
(a) (b)

f2 = lambda k: _______.__setitem__(1, _________________)
(a) (c)

https://tutor.cs61a.org
https://i.postimg.cc/W167z2St/sp21-final-image1.png

Exam generated for <EMAILADDRESS> 4

return f1, f2

M = [3, [5]]
L = [1, M]

fs = a(L)

fs[0]()
fs[1](2)

(d)

(e)

(a) (1.0 pt) Which of these could fill in both of the blanks labeled (a)? Select all that apply.

� q

2 q[1]

2 q[0]

2 M

� L

(b) (1.0 pt) Which of these could fill in blank (b)?

 q[1][1]

q[1][0]

q[1][1][0]

q[0]

q[1]

(c) (1.0 pt) Which of these could fill in blank (c)?

 [k, q[1]]

[k]

[k, q[0]]

[k, q]

[k, q[1][0]]

(d) (1.0 pt) Which of these could fill in blank (d)? Select all that apply.

� M[1].append([6])

2 M[1].extend([6])

2 M[1].append(6)

� L[1][1].append([6])

2 L[1][1].append([2 * L[1][0]])

Exam generated for <EMAILADDRESS> 5

(e) (2.0 pt) Fill in blank (e).

M[1][1].extend([None])

Exam generated for <EMAILADDRESS> 6

2. (11.0 points) What Can Separate Us?

The following problems involve our standard CS61A Link class and the toLinked function from Lecture 36:

def toLinked(L):
"""Returns a linked-list representation of the Python iterable L."""
if len(L) == 0:

return Link.empty
result = last = Link(L[0], Link.empty)
for item in L[1:]:

last.rest = Link(item)
last = last.rest

return result

(a) (8.0 points)

Implement the function gather, which takes a linked list L and returns a linked list of two linked lists:
first the list L after removing all items that are originally surrounded by two equal items; and second, the
list of all the removed items. For example, if we mark items to be removed in the list

<1 3 4 3 5 6 5 1 0>

with asterisks, we get

<1 3 *4* 3 5 *6* 5 1 0>,

so that gather would return

<<1 3 3 5 5 1 0> <4 6>>

The computation proceeds left to right; when two equal items are found separated by a third, the third
item is removed and not considered in further removals. Thus, in a sequence like <1 2 1 2>, only the first
2 is removed. That is, the list is treated as <1 *2* 1 2>, and the second 1 is not removed: gather returns

<<1 1 2> <2>>

Also, only items originally surrounded by equal values are considered, so that the list <1 1 2 1> is treated
as <1 1 *2* 1> and gather returns

<<1 1 1> <2>>

Even though the second 1 is surrounded in the resulting list.

def gather(L):
"""Returns a linked list containing two lists: comp and sep.
The list comp contains the values of L, but with all items that were
initially surrounded by two equal values removed. The list sep is the
list of removed values, in order from left to right.
The operation is non-destructive.
>>> L = toLinked([0, 1, 3, 1, 3, 4, 5, 6, 5, 6, 7, 8, 7, 7, 9])
>>> # L is <0 1 *3* 1 3 4 5 *6* 5 6 7 *8* 7 7 9>,
>>> R = gather(L)
>>> print(R)
<<0 1 1 3 4 5 5 6 7 7 7 9> <3 6 8>>
>>> print(L) # Check that original list not mutated
<0 1 3 1 3 4 5 6 5 6 7 8 7 7 9>
>>> print(gather(toLinked([1] * 10))) # <1 *1* 1 *1* 1 *1* 1 *1* 1 1>
<<1 1 1 1 1 1> <1 1 1 1>>
>>> print(gather(toLinked([1, 2, 3, 1, 4])))
<<1 2 3 1 4> ()>
>>> print(gather(toLinked([1, 1])))
<<1 1> ()>
>>> print(gather(toLinked([1, 1, 2, 1]))) # <1 1 *2* 1>

https://code.cs61a.org/sp21/36.py

Exam generated for <EMAILADDRESS> 7

<<1 1 1> <2>>
"""
def compressed(R):

if ___:
(a)

return R
if ___:
(b)

return ___
(c)

return ___
(d)

def separators(R):
if ___:
(a)

return _________________________________
(e)

if __:
(b)

return Link(___,
(f)

______________________________________)
(g)

return ___
(h)

return toLinked([compressed(L), separators(L)])

i. (1.0 pt) Which of these could fill in the two blanks labeled (a)?

R is Link.empty

R.rest is Link.empty

R.rest.rest is Link.empty

R.rest.rest.rest is Link.empty

 R is Link.empty or R.rest is Link.empty or R.rest.rest is Link.empty

ii. (1.0 pt) Which of these could fill in the two blanks labeled (b)?

R == R.rest.rest

R.first == R.rest.first

R.rest is not Link.empty and R.first == R.rest.first

 R.first == R.rest.rest.first

Exam generated for <EMAILADDRESS> 8

iii. (1.0 pt) Which of these could fill in blank (c)?

compressed(R.rest)

compressed(R.rest.rest)

Link(R, R.rest.first)

 Link(R.first, compressed(R.rest.rest))

Link(R.rest.first, compressed(R.rest.rest))

iv. (1.0 pt) Which of these could fill in blank (d)?

compressed(R.rest)

compressed(Link(R.first, R.rest))

 Link(R.first, compressed(R.rest))

Link(R.first, compressed(R.rest.rest))

Link(R.first, compressed(R.rest.first))

v. (1.0 pt) What can fill in blank (e)?

Link.empty

vi. (1.0 pt) What can fill in blank (f)?

R

R.first

 R.rest.first

R.rest.rest.first

R.rest

vii. (1.0 pt) What can fill in blank (g)?

separators(R.rest.rest)

viii. (1.0 pt) What can fill in blank (h)?

separators(R.rest)

Exam generated for <EMAILADDRESS> 9

(b) (3.0 points)

The dgather function destructively computes the first item of the value returned by gather. That is, it
takes a linked list L and returns L after removing all items that are originally surrounded by two equal
items. The operation is destructive, so that the original data cannot be reconstructed in general. The
function should not create any new Links.

def dgather(L):
"""Returns a linked list containing the values of L, but with all
items that were initially surrounded by two equal values removed.
The operation is destructive.
>>> L = toLinked([0, 1, 3, 1, 3, 4, 5, 6, 5, 6, 7, 8, 7, 7, 9])
>>> R = dgather(L)
>>> print(R)
<0 1 1 3 4 5 5 6 7 7 7 9>
>>> print(dgather(toLinked([1] * 10)))
<1 1 1 1 1 1>
>>> print(dgather(toLinked([1, 2, 3, 1, 4])))
<1 2 3 1 4>
>>> print(dgather(toLinked([1, 1])))
<1 1>
>>> print(dgather(toLinked([1, 1, 2, 1])))
<1 1 1>
"""
compressed = L
while __:
(a)

if ___:
(b)

__
(c)

L = L.rest

return compressed

i. (1.0 pt) What can fill in blank (a)? Select all that apply.

2 L is not Link.empty

2 L is not Link.empty and L.rest is not Link.empty

2 L is not Link.empty and L.rest.rest is not Link.empty

� L is not Link.empty and L.rest is not Link.empty and L.rest.rest is not Link.empty

ii. (1.0 pt) What can fill in blank (b)?

L == L.rest.rest

L.first == L.rest.first

L.first != L.rest.first

L.rest is not Link.empty and L.first == L.rest.first

 L.first == L.rest.rest.first

Exam generated for <EMAILADDRESS> 10

iii. (1.0 pt) fill in blank (c) with one statement.

L.rest = L.rest.rest

Exam generated for <EMAILADDRESS> 11

3. (22.0 points) Tree Match-Maker

In this problem, we’ll use our standard CS61A Tree class:

class Tree:
"""
>>> t = Tree(3, [Tree(2, [Tree(5)]), Tree(4)])
>>> t.label
3
>>> t.branches[0].label
2
>>> t.branches[1].is_leaf()
True
"""
def __init__(self, label, branches=[]):

for b in branches:
assert isinstance(b, Tree)

self.label = label
self.branches = list(branches)

def is_leaf(self):
return not self.branches

def __repr__(self):
if self.branches:

branch_str = ', ' + repr(self.branches)
else:

branch_str = ''
return 'Tree({0}{1})'.format(repr(self.label), branch_str)

(a) (10.0 points)

A tree pattern is a tree that may contain pattern variables, which are leaves whose labels are strings that
begin with $. In a tree pattern, pattern variables are also the only nodes whose labels start with $. A tree
pattern P matches a tree T if either

• P is a pattern variable, or
• P’s label equals T’s label, P and T have the same number of children, and the children of P match the

corresponding children of T.

In addition, if P contains multiple instances of a pattern variable labeled, say, $X, then each instance of a
pattern variable labeled $X must match an identical subtree within T.

The function tree_match tests to see if a tree pattern matches a tree, returning either the value False if
not, or a dictionary containing the matches for any pattern variables in the tree pattern if they do match.
The dictionary returned can be empty ({}) if the tree pattern matches literally. For example,

>>> tree_match(Tree(1, [Tree(2)]), Tree(1, [Tree(2)]))
{}
>>> tree_match(Tree(1, [Tree(2)]), Tree(1, [Tree(3)]))
False

Careful: not all tree labels have to be strings!

def tree_match(pattern, tree):
"""If PATTERN matches all of TREE, returns a dictionary that maps
the pattern-variable labels in PATTERN to subtrees of TREE that they
match. Otherwise, returns False.
>>> T = Tree("+", [Tree(0), Tree("*", [Tree(2), Tree(3)])])
>>> P1 = Tree("+", [Tree(0), Tree("$X")])

Exam generated for <EMAILADDRESS> 12

>>> P2 = Tree("*", [Tree(0), Tree("$X")])
>>> P3 = Tree("+", [Tree("$X"), Tree("$Y")])
>>> P4 = Tree("+", [Tree("$X"), Tree("$X")])
>>> tree_match(P1, T)
{'$X': Tree('*', [Tree(2), Tree(3)])}
>>> tree_match(P2, T)
False
>>> tree_match(P3, T)
{'$X': Tree(0), '$Y': Tree('*', [Tree(2), Tree(3)])}
>>> tree_match(P4, T)
False
>>> tree_match(T, T)
{}
"""
result = { }

def matcher(p, t):
if ___:
(a)

if __:
(b)

return False

(c)

elif __:
(d)

return False
else:

for k in range(len(p.branches)):
if ___:
(e)

return False
return True

return ______________________________
(f)

i. (1.0 pt) Which of these could fill in blank (a)? Select all that apply.

2 p.is_leaf()

2 p.label[0] == '$'

2 p.is_leaf() and p.label[0] == '$'

2 p.label != '' and p.label[0] == '$'

� p.label != '' and str(p.label)[0] == '$'

� (str(p.label) + " ")[0] == '$'

ii. (1.0 pt) Which of these could fill in blank (b)? Select all that apply.

2 result[p.label] != t

� p.label in result and result[p.label] != t

� result.get(p.label, t) != t

2 p.label in result and result[p.label] == t

Exam generated for <EMAILADDRESS> 13

iii. (3.0 pt) Fill in blank (c).

result[p.label] = t

iv. (1.0 pt) Which of these could fill in blank (d)? Select all that apply.

2 p.label != t.label and p.branches != t.branches

2 p.label != t.label or p.branches != t.branches

2 p.label != t.label and len(p.branches) != len(t.branches)

� p.label != t.label or len(p.branches) != len(t.branches)

� (p.label, len(p.branches)) != (t.label, len(t.branches))

v. (3.0 pt) Fill in blank (e).

not matcher(p.branches[k], t.branches[k])

vi. (1.0 pt) Which of these could fill in blank (f)?

 matcher(pattern, tree) and result

result

result and matcher(pattern, tree)

False if result is False else matcher(pattern, tree)

matcher(pattern, tree)

Exam generated for <EMAILADDRESS> 14

(b) (5.0 points)

The tree_subst function non-destructively computes the result of replacing subtrees of a tree that match
a given pattern. For each matching subtree, T , the replacement is computed by update(d), where d is the
dictionary returned by tree_match for T . Replacement happens from the bottom of the tree up; a subtree
is matched only after all of its children have been substituted by tree_subst.

Assume that the function tree_match from the previous question works as specified.

def tree_subst(pattern, update, tree):
"""Return a tree that results from replacing each subtree of TREE that
matches PATTERN (as defined by tree_match) with UPDATE(d), where d is
the dictionary mapping pattern variable labels to trees that is returned by
tree_match. Matching proceeds from the leaves up, with the pattern
always being matched to the subtree resulting from
performing substitution on its children. The function is non-destructive.
>>> T = Tree("*", [Tree("+", [Tree(10),
... Tree("+", [Tree(0),
... Tree("*", [Tree(2), Tree(3)])])]),
... Tree("+", [Tree(0), Tree(0)])])
>>> P1 = Tree("+", [Tree(0), Tree("$X")])
>>> tree_subst(P1, lambda d: d['$X'], T)
Tree('*', [Tree('+', [Tree(10), Tree('*', [Tree(2), Tree(3)])]), Tree(0)])
>>> T
Tree('*', [Tree('+', [Tree(10), Tree('+', [Tree(0), Tree('*', [Tree(2), Tree(3)])])]), Tree('+', [Tree(0), Tree(0)])])
>>> tree_subst(P1, lambda d: d['$X'], tree_subst(P1, lambda d: d['$X'], T))
Tree('*', [Tree('+', [Tree(10), Tree('*', [Tree(2), Tree(3)])]), Tree(0)])
>>> tree_subst(Tree('+', [Tree(1), Tree(2)]),
... lambda d: Tree(3),
... Tree('*', [Tree('+', [Tree(1), Tree(2)]), Tree(7)]))
Tree('*', [Tree(3), Tree(7)])
"""

new_tree = Tree(tree.label, __)
(a)
d = tree_match(pattern, new_tree)

if ___
(b)

return ___
(c)

else:
return new_tree

i. (1.0 pt) Which of these could fill in blank (a)?

 [tree_subst(pattern, update, b) for b in tree.branches]

map(tree_subst, tree.branches)

[b for b in tree.branches]

[update(b) for b in tree.branches]

[update(tree_subst(pattern, update, b)) for b in tree.branches]

Exam generated for <EMAILADDRESS> 15

ii. (2.0 pt) Fill in blank (b).

d is not False

iii. (2.0 pt) Fill in blank (c).

update(d)

Exam generated for <EMAILADDRESS> 16

(c) (7.0 points)

The dtree_subst function produces the same tree as tree_subst, but does so destructively. Only the
update function may create new trees.

def dtree_subst(pattern, update, tree):
"""Return a tree that results from replacing each subtree of TREE that
matches PATTERN (as defined by tree_match) with UPDATE(d), where d is
the dictionary mapping pattern variable labels to trees that is returned by
tree_match. Matching proceeds from the leaves up, with the pattern
always being matched to the subtree resulting from
performing substitution on its children. The function is destructive.
>>> T = Tree("*", [Tree("+", [Tree(10),
... Tree("+", [Tree(0),
... Tree("*", [Tree(2), Tree(3)])])]),
... Tree("+", [Tree(0), Tree(0)])])
>>> P1 = Tree("+", [Tree(0), Tree("$X")])
>>> dtree_subst(P1, lambda d: d['$X'], T)
Tree('*', [Tree('+', [Tree(10), Tree('*', [Tree(2), Tree(3)])]), Tree(0)])
>>> T
Tree('*', [Tree('+', [Tree(10), Tree('*', [Tree(2), Tree(3)])]), Tree(0)])
>>> dtree_subst(P1, lambda d: d['$X'], T)
Tree('*', [Tree('+', [Tree(10), Tree('*', [Tree(2), Tree(3)])]), Tree(0)])
>>> dtree_subst(P1, lambda d: d['$X'],
... Tree('+', [Tree('+', [Tree(0), Tree(0)]),
... Tree(5)]))
Tree(5)
>>> T = Tree('*', [Tree(5), Tree(10)])
>>> T0 = T.branches[0]
>>> dtree_subst(P1, lambda d: Tree(0), T) # Should not change tree.
Tree('*', [Tree(5), Tree(10)])
>>> T0 is T.branches[0] # Check that new node not created.
True
"""

for k in __:
(a)

__
(b)

d = tree_match(pattern, tree)
if <same as blank (b) in the tree_subst problem>:

return <same as blank (c) in tree_subst problem>
else:

return ___
(c)

i. (2.0 pt) Fill in blank (a).

range(len(tree.branches))

Exam generated for <EMAILADDRESS> 17

ii. (2.0 pt) Fill in blank (b).

tree.branches[k] = dtree_subst(pattern, update, tree.branches[k])

iii. (1.0 pt) Fill in blank (c).

tree

iv. (2.0 pt) I’d like to use dtree_subst to replace all subtrees of T of the form Tree('+', [Tree(A),
Tree(B)]), where A and B are integers, with Tree(C), where C is the sum of A and B. We’ll assume
that Trees with integer labels are leaves. I use the call

dtree_subst(Tree('+', [Tree('$A'), Tree('$B')]), compute_subst, T)

and define compute_subst like this:

def compute_subst(d):
A = d['$A'].label
B = d['$B'].label

if type(A) is int and type(B) is int:

return Tree(A + B)
else

return __

What should replace the blank?

T

d['$A']

d['$B']

 Tree('+', [d['$A'], d['$B']])

Tree('+', [Tree(d['$A']), Tree(d['$B'])])

Tree('+', [A, B])

Exam generated for <EMAILADDRESS> 18

4. (8.0 points) Defer To Your Ancestors

The generator humble traverses a tree with numeric labels, yielding only labels of nodes that are strictly less
than those of all their ancestors. So for a tree

10
/ \
/ \

6 14
/ | \ / | \

3 2 7 11 5 1

humble would generate the labels 3 2 6 5 1 10 in that order.

def humble(tr, smallest_ancestor=float('inf')):
"""Yield the labels of the Tree TR that are strictly less than
SMALLEST_ANCESTOR and the labels of all ancestors of TR
in postorder (bottom to top, left to right).
>>> T = Tree(10, [Tree(6, [Tree(3), Tree(2), Tree(7)]),
... Tree(14, [Tree(11), Tree(5), Tree(1)])])
>>> for p in humble(T):
... print(p)
3
2
6
5
1
10
"""

for ___:
(a)

yield ___
(b)

if ___:
(c)

__
(d)

(a) (2.0 pt) Fill in blank (a).

b in tr.branches:

(b) (2.0 pt) Fill in blank (b).

from humble(b, min(tr.label, smallest_ancestor))

(c) (2.0 pt) Fill in blank (c).

tr.label < smallest_ancestor

Exam generated for <EMAILADDRESS> 19

(d) (2.0 pt) Fill in blank (d).

yield tr.label

Exam generated for <EMAILADDRESS> 20

5. (15.0 points) Sorting Out Scheme

There are many ways to sort a list of numbers (an entire volume of Knuth’s famous The Art of Computer
Programming series goes into many in exhaustively loving detail.) Let’s consider a simple insertion sort. The
algorithm here is to sort all but the first element of the input list and then insert the first element of the input
into the sorted part just before the first value that is strictly larger (or at the end if there is no larger value).
So, for example, to sort (4 0 5 1):

• Sort (0 5 1):
– Sort (5 1):

∗ Sort (1) -> Returns (1)
∗ Insert 5 into (1) -> Returns (1 5)

– Insert 0 into (1 5) -> Returns (0 1 5)
• Insert 4 into (0 1 5) -> Returns (0 1 4 5)

(a) (4.0 points)

First, we’ll implement insert, which inserts a number into an already sorted list of numbers. The expect
tests at the end give examples.

(define (insert val L)
;;; Assuming that L is a list of numbers sorted in non-descending order,
;;; and VAL is a number, return the list resulting from inserting VAL into
;;; L so that the resulting list is also sorted.
(cond ((null? L) _________________________________)
; (a)

(________________________ ______________________________)
; (b) (c)
(else ___)))
; (d)

; Some tests
(expect (insert 5 '(0 3 6 9 11)) (0 3 5 6 9 11))
(expect (insert 3 '()) (3))
(expect (insert 12 '(0 3 6 9 11)) (0 3 6 9 11 12))
(expect (insert -1 '(0 3 6 9 11)) (-1 0 3 6 9 11))

i. (1.0 pt) What can fill in blank (a)? Select all that apply.

2 '()

2 L

2 val

2 (cons val)

� (list val)

� (cons val L)

ii. (1.0 pt) What can fill in blank (b) in such a way that neither (b) nor (c) contains a recursive call?
Select all that apply.

� (< val (car L))

2 (< (car L) val)

� (<= val (car L))

2 (<= (car L) val)

Exam generated for <EMAILADDRESS> 21

iii. (1.0 pt) What can fill in blank (c)?

L

 (cons val L)

(cons L val)

(append val L)

(append L val)

iv. (1.0 pt) What can fill in blank (d)?

(cons val (insert (car L) (cdr L)))

 (cons (car L) (insert val (cdr L)))

(insert (car L) (cons val (cdr L)))

(insert val (cons (car L) (cdr L)))

(append (car L) (insert val (cdr L)))

Exam generated for <EMAILADDRESS> 22

(b) (4.0 points)

Next, assuming that we have a working insert function, implement insertion-sort, which sorts a list of
numbers into non-descending order. Again, the expect tests at the end give examples.

(define (insertion-sort L)
(if _________________________ ________________________
; (e) (f)

(insert ____________________________________ ___________________________)))
; (g) (h)

(expect (insertion-sort '(2 3 5 7 9)) (2 3 5 7 9))
(expect (insertion-sort '()) ())
(expect (insertion-sort '(42)) (42))
(expect (insertion-sort '(9 8 7 6 5 4 3 2 1)) (1 2 3 4 5 6 7 8 9))

i. (1.0 pt) Fill in blank (e).

(null? L)

ii. (1.0 pt) Fill in blank (f).

’()

iii. (1.0 pt) Fill in blank (g).

(car L)

iv. (1.0 pt) Fill in blank (h).

(insertion-sort (cdr L))

Exam generated for <EMAILADDRESS> 23

(c) (2.0 points)

i. (1.0 pt) In the process of executing insertion-sort on a list of length N , how many cons operations
are performed in the best case?

Θ(1)

Θ(lgN)

 Θ(N)

Θ(N2)

Θ(N3)

Θ(2N)

ii. (1.0 pt) In the process of executing insertion-sort on a list of length N , how many cons operations
are performed in the worst case?

Θ(1)

Θ(lgN)

Θ(N)

 Θ(N2)

Θ(N3)

Θ(2N)

Exam generated for <EMAILADDRESS> 24

(d) (5.0 points)

In C, C++, and Java, one can write loops like this one:

v = 0;
for (k = 1; k < 10; k += 1) {

v = v + k*k
}

to sum up the squares of numbers from 0 to 9. This is equivalent to the Python loop

v = 0
k = 1
while k < 10:

v = v + k*k
k += 1

Let’s define a macro to do the same in Scheme. Here, I’d like to be able to write

(for k 1 (< k 10) (+ k 1) v 0 (+ v (* k k)))

and have it return the final value of v, as computed by the Scheme equivalent of the loops above. Fill in
the following macro definition to do so:

(define-macro (for control-var control-init test incr result-var result-init body)
`(begin

(define ($loop$,control-var ____________________________)
; (a)
(if __

(b)
($loop$ ______________________________________)
(c)
___________________________________))
(d)

($loop$ ___)))
; (e)

; Tests
(expect (for x 1 (< x 10) (+ x 1) v 0 (+ v x)) 45)
(expect (for L '(1 2 3 4 5 6 7 8 9) (not (null? L)) (cdr L) v 0 (+ v (car L)))

45)
(expect (for x 0 (< x 5) (+ x 1) v '() (append v (list (* x x))))

(0 1 4 9 16))

i. (1.0 pt) What can you fill in (a)?

,control-init

control-init

 ,result-var

result-var

,incr

incr

Exam generated for <EMAILADDRESS> 25

ii. (1.0 pt) Fill in blank (b).

,test

iii. (1.0 pt) What can fill in blank (c)?

 ,incr ,body

,(cons incr body)

,control-var ,incr

,control-var ,body

,(cons control-var body)

iv. (1.0 pt) What can fill in blank (d)?

 ,result-var

,result-init

,body

,control-var

,control-init

v. (1.0 pt) What can fill in blank (e)?

 ,control-init ,result-init

control-init result-init

,control-var ,control-init

control-var control-init

,result-init ,control-init

result-init control-init

Exam generated for <EMAILADDRESS> 26

6. (3.0 points) No Ifs, Ands, or Buts

Consider the following variation on our usual Link class:

class Link:
"""A linked-list node.

>>> L = Link(1, Link(2, Link(3, Link(4))))
>>> L.map(lambda x: x*x)
Link(1, Link(4, Link(9, Link(16))))
>>> L # Should be non-destructive
Link(1, Link(2, Link(3, Link(4))))
>>> Link.empty.map(lambda x: x*x)
Link.empty
"""
def __init__(self, first, rest=None):

self.first = first
self.rest = rest or Link.empty

def __repr__(self):
if self.rest is not Link.empty:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def map(self, func):

return ___
(a)

class EmptyLink(Link):

def __init__(self):
pass

def __repr__(self):
return "Link.empty"

def map(self, func):

return __
(b)

Link.empty = EmptyLink()

As you can see, we have replaced the usual value of Link.empty with an object whose type is a subtype of
Link. The idea is to fill in the blanks so that it obeys the doctests of Link. However, your code may not
use if, and, or or.

(a) (2.0 pt) Fill in blank (a).

Link(func(self.first), self.rest.map(func))

Exam generated for <EMAILADDRESS> 27

(b) (1.0 pt) Fill in blank (b).

Link.empty

Exam generated for <EMAILADDRESS> 28

7. (7.0 points) Regularize

Consider the following list of regular expressions.

(a) (\d,\s*)+
(b) (\d,\s*)*
(c) (\d+,\s*)+
(d) (\d+,\s*)*
(e) \d+(,\s*\d+)*
(f) (\d+(,\s*\d+)*)?
(g) [e-z]*a[e-z]*b[e-z]*c[e-z]*d[e-z]*
(h) [e-z]+a[e-z]+b[e-z]+c[e-z]+d[e-z]+
(i) ([e-z]*[a-d]){4}[e-z]*
(j) ([a-f]*[g-z]*)*
(k) [ˆ(]*([(].*[)])?[ˆ(]*
(l) [ˆ()]*([(][ˆ()]*[)])*[ˆ()]*

(m) .*([(][ˆ()]*[)])*.*

For each of the following descriptions, fill in the blank that follows with the number (1-13) of the regular
expression that describes it. In each case, the regular expression must match all strings that fit the description
in their entirety.

(a) (1.0 pt) “All lists of one or more decimal integer numerals, each one except the last followed by a comma
and optional whitespace. For example, 3, 2, 5.”

5

(b) (1.0 pt) “All lists of zero or more decimal integer numerals, each one except the last followed by a comma
and optional whitespace. (A zero-item list is simply the empty string.)”

6

(c) (1.0 pt) “All lists of zero or more decimal integer numerals, each (including the last) followed by a comma
and optional whitespace.”

4

(d) (1.0 pt) “All sequences of lower-case letters containing each of the letters a, b, c, and d exactly once in
that order.”

7

(e) (1.0 pt) “All sequences of 0 or more lower-case letters.”

10

Exam generated for <EMAILADDRESS> 29

(f) (1.0 pt) “All sequences of characters other than newlines and carriage returns in which any opening
parenthesis is eventually followed by at least one closing parenthesis (they need not balance, however; in
fact, the same closing parenthesis may serve to follow any number of preceding opening parentheses, as in
x(b)c)d)).”

11

(g) (1.0 pt) “All sequences of characters other than newlines and carriage returns in which all parentheses are
balanced and no pair of parentheses is nested inside another. For example ab, (c)d(fg)h, or (abc), but
not (ab)) or)a(.”

12

Exam generated for <EMAILADDRESS> 30

8. (3.0 points) Backus Up

(a) (3.0 pt) The syntax trees produced by the following Lark grammar for a calculator will be processed to
produce the appropriate calculated value. That is, we process from the leaves up, evaluating each subtree
as we go up to yield an appropriate integer number.

start: expr1

expr1: expr2 | expr1 "//" expr2

expr2: NUMBER | NUMBER "-" expr2

NUMBER: /\d+/

%ignore /\s+/

Assuming that the operators have the same meanings they do in Python, what would be the value computed
for

96 // 8 - 2 - 2 // 3

?

2

 4

8

10

12

48

96

Exam generated for <EMAILADDRESS> 31

9. (1.0 points) Extra!

(a) (1.0 pt) An eccentric billionaire has bought a group of islands somewhere in the Pacific, and is using
them to raise (and thus preserve) some colonies of rare animal species. He has fenced each of these islands,
dividing them into separate regions surrounded by fences, each of which houses exactly one of the species
(all different). Each fence consists of sections that run between two fenceposts; any fencepost can be a
terminus of any number of sections. The fences on each individual island are connected together. The
total number of fenceposts on all the islands is 1000, with 1500 sections, enclosing 510 species. How many
islands are there?

10

Exam generated for <EMAILADDRESS> 32

No more questions.

