
CS 61A Structure and Interpretation of Computer Programs
Fall 2022 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

Exam generated for <EMAILADDRESS> 3

1. (15.0 points) What Would Python Do?

Assume the code below has been executed.

triple = lambda z: 3 * z
dec = lambda z: z - 1

def alt(f, g):
def h(x):

print(fns[0](fns[1](x)))
fns[0] = fns[1]
fns[1] = fns[0]
return h

fns = [f, g]
return h

class Sub:
fns = [lambda z: str(z) + str(z),

lambda z: 2 * z]

def __init__(self, f, g):
self.fns = [f, g]

def h(self, x):
print(Sub.fns[0](Sub.fns[1](x)))
Sub.fns = self.fns
return self

def __repr__(self):
return str(self.fns[0]('ha'))

class Pub(Sub):
fns = [lambda z: [z],

lambda z: z]

def __init__(self, f, g):
fns = [f, g] # Careful!

What is the output displayed by the interactive Python interpreter after evaluating each of the following
expressions.

Expressions are evaluated in order, and earlier expressions may affect later ones.

All of the expressions for this question appear here (so that you can work out the answer without flipping pages),
but answer the question using the multiple choice prompts on the following pages.

>>> print(20, (lambda x: print)(20)(22))

>>> (print(4) or 3+2) or 1/0

>>> alt(triple, dec)(8)(8)

>>> Sub(triple, dec).h(8).h(8)

>>> [f(8) for f in Pub(dec, triple).fns]

>>> Pub(dec, triple).h(8).h(8)

Exam generated for <EMAILADDRESS> 4

(a) (1.0 pt)What is the first line displayed for the first expression: print(20, (lambda x: print)(20)(22))

20

22

20 None

22 None

A function value

(b) (1.0 pt)What is the second line displayed for the first expression: print(20, (lambda x: print)(20)(22))

20

22

20 None

22 None

A function value

(c) (1.0 pt) What is the first line displayed for the second expression: (print(4) or 3+2) or 1/0

4

5

4 5

None 5

There is no first line because an error occurs

(d) (1.0 pt) What is the second line displayed for the second expression: (print(4) or 3+2) or 1/0

4

5

4 5

None 5

There is no second line because an error occurs

(e) (1.0 pt) What is the first line displayed for the third expression: alt(triple, dec)(8)(8)

6

21

23

72

(f) (1.0 pt) What is the second line displayed for the third expression: alt(triple, dec)(8)(8)

6

21

23

72

Exam generated for <EMAILADDRESS> 5

(g) (1.0 pt) What is the third line displayed for the third expression: alt(triple, dec)(8)(8)

A function

None

'h'

h

There is no third line

(h) (1.0 pt) What is the first line displayed for the fourth expression: Sub(triple, dec).h(8).h(8)

8

12

16

21

1616

'8888'

There is no first line because an error occurs

(i) (1.0 pt) What is the second line displayed for the fourth expression: Sub(triple, dec).h(8).h(8)

8

12

16

21

1616

There is no second line because an error occurs

(j) (1.0 pt) What is the third line displayed for the fourth expression: Sub(triple, dec).h(8).h(8)

A function

ha

haha

hahaha

['ha']

['haha']

['hahaha']

There is no third line (for any reason, including an error)

Exam generated for <EMAILADDRESS> 6

(k) (2.0 pt) What is displayed for the fifth expression: [f(8) for f in Pub(dec, triple).fns]

[7, 21]

[7, [21]]

['88', 16]

['88', [16]]

[[8], 8]

[[8], [8]]

None of these

(l) (1.0 pt) What is the first line displayed for the sixth expression: Pub(dec, triple).h(8).h(8)

8

[8]

21

23

1616

'8888'

(m) (1.0 pt) What is the second line displayed for the sixth expression: Pub(dec, triple).h(8).h(8)

8

[8]

21

23

1616

'8888'

(n) (1.0 pt) What is the third line displayed for the sixth expression: Pub(dec, triple).h(8).h(8)

A function

ha

haha

hahaha

['ha']

['haha']

['hahaha']

There is no third line (for any reason, including an error)

Exam generated for <EMAILADDRESS> 7

2. (4.0 points) What About Scheme?

Choose the output displayed by the interactive Scheme interpreter when each expression below is
evaluated.

To help distinguish between the backtick (`) and apostrophe (') characters: The first character in subpart 3’s
line of code is a backtick. All remaining ticks are apostrophes (the first character of line 2, the 8th non-space
character of line 3, and three characters in line 4).

(a) (1.0 pt) (+ (* 3 2) (+ 3 2))

11

(+ (* 3 2) (+ 3 2))

(+ 6 (+ 3 2))

(+ (* 3 2) 5)

(+ 6 5)

(b) (1.0 pt) '(+ (* 3 2) (+ 3 2))

11

(+ (* 3 2) (+ 3 2))

(+ 6 (+ 3 2))

(+ (* 3 2) 5)

(+ 6 5)

(c) (1.0 pt) ` (+ ,(* 3 '2) (+ 3 2))

11

(+ (* 3 2) (+ 3 2))

(+ 6 (+ 3 2))

(+ (* 3 2) 5)

(+ 6 5)

Error

(d) (1.0 pt) '(+ (* '3 2) '(+ 3 2))

11

(+ (* 3 2) (+ 3 2))

(+ (* 3 2) (quote (+ 3 2)))

(+ (* (quote 3) 2) (+ 3 2))

(+ (* (quote 3) 2) (quote (+ 3 2)))

(+ (* 3 2) (quasiquote (+ 3 2)))

(+ (* (quasiquote 3) 2) (+ 3 2))

(+ (* (quasiquote 3) 2) (quasiquote (+ 3 2)))

Error

Exam generated for <EMAILADDRESS> 8

3. (6.0 points) Sum Total

Executing the code on the left produced this environment diagram. Complete the diagram, then answer questions
about it. The diagram itself will not be scored; only the questions. Blanks that do not have a letter label will
not be scored.

(a) (1.0 pt) Blank (a): How many elements are in the list bound to result in the Global frame?

0

1

2

(b) (2.0 pt) Blank (b): What value is bound to totals in the Global frame?

An empty list

A list [3]

A list [6]

None of the above

(c) (1.0 pt) Blank (c): What value is bound to s in frame f2?

An empty list

A list [1]

A list [4]

A list [1, 2, 4]

(d) (2.0 pt) Blank (d): What is the return value of frame f2?

Exam generated for <EMAILADDRESS> 9

4. (16.0 points) Advent of Code

The choice of programming language can affect the difficulty of implementation. This problem was adapted
from Day 1 of the 2020 Advent of Code, a set of 25 programming challenges released annually in December.
Complete the following Python, Scheme, and SQL solutions to this problem:

Given a list of numbers, find the two numbers in the list that sum to 2020. You are guaranteed that there is
exactly one pair of numbers that sum to 2020 and that the list does not contain 1010.

For example, given [979, 1721, 366, 299, 675, 1456], output [1721, 299], since 1721+299 = 2020.

(a) (5.0 points) Python

def find_pair(s):
'''Return the two elements of s that sum to 2020, in the order that they appear in s.

>>> find_pair([979, 1721, 366, 299, 675, 1456])
[1721, 299]
'''
for i in __(a)__:

for j in __(b)__:
__(c)__:

return __(d)__

i. (1.0 pt) Fill in Blank (a)

s

[s]

s[:len(s)-1]

zip(s, s)

range(s)

ii. (1.0 pt) Fill in Blank (b)

i

[i]

s

s[1:]

range(s)

iii. (2.0 pt) Fill in Blank (c)

iv. (1.0 pt) Select all expressions that could fill in Blank (d).

2 [i, j]

2 list(i, j)

2 [list(i, j)]

2 [next(i), next(j)]

Exam generated for <EMAILADDRESS> 10

(b) (6.0 points) Scheme

Implement find-pair in Scheme. You may call contains?, which takes a Scheme list of numbers s and a
number n. It returns whether s contains n.

;;; > (contains? '(1 2 3) 3)
;;; #t
;;; > (contains? '(1 2 3) 4)
;;; #f
(define (contains? s n) ...) ; Assume contains? has been implemented correctly for you.
;;; > (find-pair '(979 1721 366 299 675 1456))
;;; (1721 299)
(define (find-pair s)

(if __(a)__ (__(b)__ (car s) (- 2020 (car s))) __(c)__))

i. (3.0 pt) Fill in Blank (a)

ii. (1.0 pt) Fill in Blank (b)

append

car

cdr

cons

list

iii. (2.0 pt) Fill in Blank (c).

nil

(cdr s)

(map (lambda (x) (- 2020 x)) (cdr s))

(filter (lambda (x) (= 2020 (+ (car s) x))) (cdr s))

(find-pair (cdr s))

(find-pair (map (lambda (x) (- 2020 x)) (cdr s)))

(find-pair (filter (lambda (x) (= 2020 (+ (car s) x))) (cdr s)))

Exam generated for <EMAILADDRESS> 11

(c) (5.0 points) SQL

Implement a SQL query that creates a one-row, two-column table of numbers where the single row
contains the two numbers in table s that sum to 2020. The order that the numbers appear will not be
graded.

CREATE TABLE s AS
SELECT 979 as num UNION SELECT 1721 UNION SELECT 366 UNION
SELECT 299 UNION SELECT 675 UNION SELECT 1456;

SELECT __(a)__ FROM __(b)__ WHERE __(c)__;

i. (1.0 pt) Fill in Blank (a)

s, 2020 - s

num, 2020 - num

a, b

s.a, s.b

a.num, b.num

ii. (2.0 pt) Fill in Blank (b)

s

a, b

s, s

s AS a, s AS b

a AS s, b AS s

iii. (2.0 pt) Fill in Blank (c)

a + b = 2020

a.num + b.num = 2020

a < b AND a + b = 2020

a.num < b.num AND a.num + b.num = 2020

a = b AND a + b = 2020

a.num = b.num AND a.num + b.num = 2020

(2020 - num) IN s

CONTAINS(2020 - num, s)

Exam generated for <EMAILADDRESS> 12

5. (5.0 points) Two Cents

One of the most useful aspects of programming is that code can often be reused to solve similar problems. The
count_change function takes an integer amount of cents and returns the number of ways to make change for
that amount in US currency.

coins = (1, 5, 10, 25, 50)

def count_change(amount):
'''Return the number of ways to make change for amount.

>>> count_change(10) # 10, 5-5, 5-1-1-1-1-1, 1-1-1-1-1-1-1-1-1-1
4
>>> count_change(20) # 10-10, 10-5-5, 10-5-1-1-1-1-1, 10-1-1-1-1-1-1-1-1-1-1, 5-5-5-5, ...
9
>>> count_change(100)
292
'''
def helper(remaining, coin_index):

if coin_index == len(coins) or remaining < 0:
return 0

if remaining == 0:
return 1

return (helper(remaining - coins[coin_index], coin_index) +
helper(remaining , coin_index + 1))

return helper(amount, 0)

Modify this code to solve the following new problem:

Your cash register only has k of each type of coin. Implement count_change_register, which counts the
number of ways to make change for amount using at most k coins of each type.

def count_change_register(amount, k):
'''Return the number of ways to make change for amount using at most k of each coin type.

>>> count_change_register(20, 10) # Excludes 20 pennies and excludes 1 nickel + 15 pennies
7
>>> count_change_register(20, 2) # 10-10, 10-5-5
2
>>> count_change_register(100, 10)
84
>>> count_change_register(100, 100)
292
'''
def helper(remaining, coin_index, n):

if coin_index == len(coins) or remaining < 0 or __(a)__:
return 0

if remaining == 0:
return 1

return (helper(remaining - coins[coin_index], coin_index , __(b)__) +
helper(remaining , coin_index + 1, __(c)__))

return helper(amount, 0, 0)

Exam generated for <EMAILADDRESS> 13

(a) (2.0 pt) Fill in Blank (a)

True

False

n > 0

k > 0

n > k

n == k

n > 10

n == 10

(b) (1.0 pt) Fill in Blank (b)

k

k - 1

k + 1

n

n + 1

n - 1

0

10

(c) (1.0 pt) Fill in Blank (c)

k

k - 1

k + 1

n

n + 1

n - 1

0

10

(d) (1.0 pt) What does count_change_register(25, 2) return?

0

1

2

3

4

None of these

Exam generated for <EMAILADDRESS> 14

6. (6.0 points) Barking up the Wrong Tree

After years of using SQL, John the Dog Breeder decides to switch to a Python Tree to track his dogs’ heredity.

Implement tree_to_table, which takes a Tree instance t representing dogs. Each node in the tree has a label
that is the name of a dog and children corresponding to the children of that dog. The tree_to_table function
returns a list of the parent-child relationships in t in any order. Each parent-child relationship is represented
as a two-element tuple, where the first element is the name of the parent, and the second is the name of the
child.

The Tree class is defined on page 2 of the Midterm 2 Study Guide with instance attributes label and branches.
You may not use any functions from the study guide defined outside of the Tree class.

For Tree('E', [Tree('F', [Tree('A', [Tree('B'), Tree('C')]), Tree('D', [Tree('H')]), Tree('G')])])

One valid output is: [('A', 'B'), ('A', 'C'), ('D', 'H'), ('F', 'A'), ('F', 'D'), ('F', 'G'),
('E', 'F')]

def tree_to_table(t):
relationships = __(a)__
for i in __(b)__:

relationships.__(c)__(__(d)__)
return relationships

(a) (3.0 pt) Fill in Blank (a)

(b) (1.0 pt) Fill in Blank (b)

branches

t.branches

Tree.branches

tree_to_table(branches)

tree_to_table(t.branches)

tree_to_table(Tree.branches)

relationships

[p for p, c in relationships]

(c) (1.0 pt) Fill in Blank (c)

append

extend

Exam generated for <EMAILADDRESS> 15

(d) (1.0 pt) Fill in Blank (d)

i

i.branches

t.branches

tree_to_table(i)

tree_to_table(i.branches)

tree_to_table(t.branches)

Exam generated for <EMAILADDRESS> 16

7. (10.0 points) One Cent

In Penney’s Game, two players each choose a different sequence of three coin flips (Heads or Tails). A coin is
flipped repeatedly until one of those two sequences occurs; the winner is the player whose sequence is flipped.
Here’s an example:

Player 1 selects the sequence “HHH” and Player 2 selects the sequence “THH”, then a coin is flipped repeatedly,
yielding the following sequence of coin flips: HTTHTHTTHTHTHH. Since “THH” was flipped first (the last three
flips), Player 2 wins.

(a) (6.0 points)

First, implement the generator function three_flips. It takes as input a (potentially infinite) iterator
coin, each element of which is either 'H' or 'T' (denoting coin flips of Heads and Tails, respectively). It
yields a sequence of triples of coin flip outcomes from coin.

def three_flips(coin):
'''
>>> a = three_flips(iter("HTTHHT"))
>>> next(a) # Coin flips 0, 1, and 2
'HTT'
>>> next(a) # Coin flips 1, 2, and 3
'TTH'
>>> next(a) # Coin flips 2, 3, and 4
'THH'
>>> next(a) # Coin flips 3, 4, and 5
'HHT'
>>> next(a) # A StopIteration exception is raised
StopIteration
'''
start = __(a)__
__(b)__:

yield start
start = __(c)__ + __(d)__

i. (2.0 pt) Fill in Blank (a)

ii. (1.0 pt) Fill in Blank (b)

while True

while next(coin) is not None

for x in coin

iii. (2.0 pt)

Exam generated for <EMAILADDRESS> 17

iv. (1.0 pt) Fill in Blank (d)

coin

coin.pop()

next(coin)

Exam generated for <EMAILADDRESS> 18

(b) (4.0 points)

Implement the function penney. It receives as input an iterator coin over 'H' and 'T' and two sequences
p1 and p2. It returns 1 if Player 1 wins Penney’s Game and 2 if Player 2 wins. Assume that one player
wins before the coin runs out of elements, and that p1 and p2 are distinct three-element sequences of ‘H’
and ‘T’.

def penney(coin, p1, p2):
'''Return the winner of Penney's game, where Player 1 chooses p1 and Player 2 chooses p2.

>>> penney(iter("HTTHTHTTHTHTHH"),"THH","HHH")
1
>>> penney(iter("HTTHTHTTHTHTHH"),"HHH","THH")
2
>>> penney(iter("HTTHTHTTHTHTHH"),"HTT","THH") # HTT happens first
1
'''
it = __(a)__(lambda x: __(b)__, __(c)__)
if next(it) == p1:

return 1
return 2

i. (1.0 pt) Fill in Blank (a)

ii. (2.0 pt) Fill in Blank (b)

iii. (1.0 pt) Fill in Blank (c)

it

coin

(p1, p2)

three_flips(coin)

Exam generated for <EMAILADDRESS> 19

8. (6.0 points) A Parentheses Scheme

In a fit of Scheme-induced rage, you’ve decided that all internal parentheses must be eliminated! Implement the
procedure remove-parens that takes as input a Scheme list and returns that list with all internal parentheses
removed.

;;; > (remove-parens '(((1) 2 3) 4 5 (6 (7)) (8 10)))
;;; (1 2 3 4 5 6 7 8 10)
;;; > (remove-parens '(((a) b (c) ()) (d) e (f (((g)))) (h i)))
;;; (a b c d e f g h i)
(define (remove-parens s)

(cond
((null? s) nil)
(__(a)__ __(b)__)
(else __(c)__)))

(a) (1.0 pt) Fill in Blank (a)

(list? s)

(list? (car s))

(list? (cdr s))

(null? (cdr s))

(not (number? (car s)))

(b) (3.0 pt) Fill in Blank (b)

(c) (2.0 pt) Select all of the expressions below that could fill in Blank (c).

2 (remove-parens (cdr s))

2 (remove-parens (cons (car s) (cdr s)))

2 (remove-parens (list (car s) (cdr s)))

2 (cons (car s) (remove-parens (cdr s)))

2 (cons (remove-parens (car s)) (remove-parens (cdr s)))

2 (list (car s) (remove-parens (cdr s)))

2 (list (remove-parens (car s)) (remove-parens (cdr s)))

Exam generated for <EMAILADDRESS> 20

9. (7.0 points) Pokemon SQarLet

You’ve been hired as the newest Gym Leader of the Paldea region! Now you need to decide what team to make.
All your available Pokemon (for this question, Pokemon stats have been simplified) are listed in a SQL table
Pokemon:

Name Type1 Type2 Move1 Move2 BaseAttack BaseDefense

Rattata Normal None Endeavor Quick Attack 0 0
Maushold Normal None Population Bomb Tidy Up 30 30
Cyclizard Dragon Normal Shed Tail Dragon Rush 100 40
Meoscadera Grass Dark Flower Trick Agility 80 40
Farigiraf Normal Psychic Agility Twin Beam 40 50

You also have a table Moves listing all Pokemon moves:

Name MoveAttack MoveDefense

Endeavor 250 0
Quick Attack 40 45
Shed Tail 0 150
Dragon Rush 80 0
Flower Trick 90 55
Agility 50 20
Twin Beam 80 30
Population Bomb 100 50
Tidy Up 30 150

Create a table Attack, which lists the Name and TotalAttack of each Pokemon. The total attack of a Pokemon
is equal to the sum of a Pokemon’s BaseAttack and the MoveAttack of both moves it knows. Order rows by
total attack.

For example, Maushold has a base Attack of 30, and has two moves with MoveAttack values 100 and 0,
respectively. Its total attack is 30+100+0 = 130. With the above tables, you should have the following result:

Name TotalAttack

Maushold 130
Farigiraf 170
Cyclizar 180
Meowscadera 220
Rattata 290

CREATE TABLE Attack AS
SELECT __(a)__ AS Name, __(b)__ AS TotalAttack FROM __(c)__ WHERE __(d)__ ORDER BY TotalAttack;

(a) (1.0 pt) Select all options that could fill in Blank (a).

2 Name

2 p.Name

2 q.Name

2 a.Name

2 b.Name

Exam generated for <EMAILADDRESS> 21

(b) (2.0 pt) Fill in Blank (b)

(c) (2.0 pt) Select all options that could fill in Blank (c).

2 Pokemon, Moves

2 Pokemon, Pokemon, Moves

2 Pokemon, Moves, Moves

2 Pokemon as p, Moves as a

2 Pokemon as p, Pokemon as q, Moves as a

2 Pokemon as p, Moves as a, Moves as b

(d) (2.0 pt) Fill in Blank (d)

Exam generated for <EMAILADDRESS> 22

10. A+: Treeing up the Wrong Bark

This A+ question is not worth any points. It can only affect your course grade if you have a
high A and might receive an A+. Finish the rest of the exam first!

Write a function table_to_tree that takes a list parents of parent-child relationships between dogs. Each
element of this list is a two-element list of strings containing the name of the parent and the name of the child,
as well as ancestor, the name of the very first dog. It returns a Tree instance with root label ancestor that
has each dog’s name as a label and represents all parent-child pairs in parents as parent-child relations between
nodes. Assume that:

• All dogs have unique names and are descendents of ancestor (or ancestor itself).
• All dogs have exactly one parent (John has some weird dogs) except for ancestor, which has none.
• Any order of branches is acceptable.

For example: table_to_tree([['A','B'],['A','C'],['D','H'],['F','A'],['F','D'],['F','G'],['E','F']],'E')
could return:

Tree('E', [Tree('F', [Tree('A', [Tree('B'), Tree('C')]), Tree('D', [Tree('H')]), Tree('G')])])

def table_to_tree(parents, ancestor):
dogs = {}
def add_if_new(dog):

if __(a)__:
dogs[dog] = __(b)__

for i, j in __(c)__:
add_if_new(i)
add_if_new(j)
__(d)__

__(e)__

(a) Fill in Blank (a)

(b) Fill in Blank (b)

(c) Fill in Blank (c)

(d) Fill in Blank (d)

Exam generated for <EMAILADDRESS> 23

(e) Fill in Blank (e)

Exam generated for <EMAILADDRESS> 24

11. A+: Another Parentheses Scheme

This A+ question is not worth any points. It can only affect your course grade if you have a
high A and might receive an A+. Finish the rest of the exam first!

After you finish writing your parentheses remover, you run it on all the Scheme code you have. You then realize
that one of those programs was an ongoing assignment. Uh oh! Fortunately, your code for that assignment only
contains two-argument procedures. Write a Scheme macro eval-noparens. This macro receives as input a list
representing a line of Scheme code with all the parentheses removed (except the parentheses surrounding the
entire list), and returns the result that would have been obtained by evaluating the original line of Scheme code.
You are guaranteed that:

• All elements of the list are either numbers or symbols bound to two-input procedures.
• All original call expressions (before parentheses were removed) had exactly two operands.
• The list corresponds to exactly one valid line of Scheme code fulfilling the above conditions.

For credit, your solution must run in linear time in the length of its input.

Hint: Treat the car and cdr of the return value of helper as two independent outputs.

;;; > (eval-noparens (+ 1 * 2 3))
;;; 7
;;; > (eval-noparens (+ * 1 2 + 3 * 4 + + + 5 6 7 8))
;;; 109
;;; > (eval-noparens (cons 1 list 2 3))
;;; (1 2 3)
;;; > (let ((times *)) (eval-noparens (+ 1 times 2 3)))
;;; 7
(define-macro (eval-noparens expr)

(define (helper expr)
(if (number? (car expr)) expr

(let ((x __(a)__))
(let ((y __(b)__))

__(c)__))))
(car (helper expr)))

(a) Fill in Blank (a)

(b) Fill in Blank (b)

(c) Fill in Blank (c)

Exam generated for <EMAILADDRESS> 25

12. A+: Pokemon Ancient SQarLet

This A+ question is not worth any points. It can only affect your course grade if you have a
high A and might receive an A+. Finish the rest of the exam first!

As a gym leader, your team must be composed of Pokemon of a single type. You decide to count how many
Pokemon of each type you have. Generate a table with two columns: All unique types in your collection and
the number of Pokemon you have of each type, sorted in descending order by number of Pokemon.

Each Pokemon can have either one or two types, listed under columns Type1 and Type2.

• If a Pokemon has one type, then Type1 stores the type of the Pokemon, and Type2 stores the string "None".
• If a Pokemon has two types, then Type1 stores the first type of the Pokemon, and Type2 stores the second
type of the Pokemon (which is distinct from the first type).

• A Pokemon with two types counts as both of its types.

The table Pokemon is reprinted here for convenience. All Pokemon have unique names.

Name Type1 Type2 Move1 Move2 BaseAttack BaseDefense

Rattata Normal None Endeavor Quick Attack 0 0
Maushold Normal None Population Bomb Tidy Up 30 30
Cyclizard Dragon Normal Shed Tail Dragon Rush 100 40
Meoscadera Grass Dark Flower Trick Agility 80 40
Farigiraf Normal Psychic Agility Twin Beam 40 50

For this table, the following would be the expected output (With the last four rows in any order):

Type Count

Normal 4
Dragon 1
Grass 1
Dark 1
Psychic 1

CREATE TABLE helper AS SELECT __(a)__;
SELECT Type, COUNT(*) AS Count FROM helper __(b)__;

(a) Fill in Blank (a)

(b) Fill in Blank (b)

Exam generated for <EMAILADDRESS> 26

13. (0.0 points) OPTIONAL

The following questions will not affect your score in any way.

(a) (0.0 pt) Which of the Pokemon in the SQL question is holding an item, and what item is it?

(b) (0.0 pt) Free Space: Write/Draw anything you want!

Exam generated for <EMAILADDRESS> 27

No more questions.

