
CS 61A Structure and Interpretation of Computer Programs
Fall 2021 Midterm 2 Solutions

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

# You must choose either this option

# Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org
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Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number? A regex restricts inputs to numerical responses only.
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1. (7.0 points) Hawkeye

The box-and-pointer diagram for the value of s is shown after each line of the program below. Fill in the blanks
to match the diagrams.

s = [3, 4]

s.append(_________)
(a)

_________._________(_________)
(b) (c) (d)

s[2] = _________
(e)



Exam generated for <EMAILADDRESS> 4

(a) (2.0 pt) Which of these could fill in blank (a)? Check all that apply.

2 s

2 s[:]

2 s[0]

� [s]

2 [s[:]]

2 [s[0]]

2 list(s)

2 list(s[:])

2 list(s[0])

(b) (1.0 pt) Fill in blank (b).

s[2]

(c) (1.0 pt) Fill in blank (c).

extend

(d) (1.0 pt) Which of these could fill in blank (d)? (Select one.)

# s[1]

 s[1:]

# s[1:2]

# [s[1]]

# [s[1:]]

# [s[1:2]]

# [s[1], s]

# [s[1]] + s

(e) (2.0 pt) Fill in blank (e).

[s[2].pop()]
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2. (11.0 points) Doctor Change

(a) (6.0 points)

Implement change, a function that takes an integer n and a list of positive integers coins. It returns
whether there is a subset of the values in coins that sums to n. As a side effect, change modifies coins.

def change(n, coins):
"""Return whether a subset of coins adds up to n.

>>> change(10, [2, 7, 1, 8, 2]) # e.g., 2 + 8
True
>>> change(20, [2, 7, 1, 8, 2]) # e.g., 2 + 7 + 1 + 8 + 2
True
>>> change(6, [2, 7, 1, 8, 2]) # Impossible; only two 2's in coins
False
"""
if n == 0:

return True
elif _________:

(a)
return False

coin = coins.pop() # remove the end of coins and name it "coin"
return change(n, _________) _________ change(_________, _________)

(b) (c) (d) (e)

i. (2.0 pt) Fill in blank (a).

n < 0 or not coins or just not coins

ii. (1.0 pt) Fill in blank (b).

list(coins)
At least one of blank (b) and blank (e) must copy the coins list.

iii. (1.0 pt) Fill in blank (c).

or

iv. (1.0 pt) Which of these could fill in blank (d)? (Select one.)

 n - coin

# n - coins[0]

# n - coins[1]

# n - coins.pop()

v. (1.0 pt) Fill in blank (e).

list(coins)
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(b) (5.0 points)

Implement amounts, which takes a list of positive integers coins. It returns a sorted list of all unique
non-negative integers n for which change(n, coins) returns True. You may not call change.

def amounts(coins):
"""List all unique n such that change(n, coins) returns True (in sorted order).

>>> amounts([2, 5, 3])
[0, 2, 3, 5, 7, 8, 10]
>>> amounts([2, 7, 1, 8, 2])
[0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20]
"""
if not coins:

return _________
(a)

coin = coins[0]
rest = amounts(_________)

(b)
return sorted(_________ + [k + coin for _________])

(c) (d)

i. (1.0 pt) Fill in blank (a).

[0]

ii. (1.0 pt) Fill in blank (b).

coins[1:]

iii. (1.0 pt) Which of these could fill in blank (c)? (Select one.)

 rest

# rest[1:]

# amounts(rest)

# amounts(rest[1:])

# [k + coin for k in rest]

# [k + coin for k in rest[1:]]

iv. (2.0 pt) Fill in blank (d).

k in rest if k + coin not in rest
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3. (13.0 points) Shang-Chi

(a) (6.0 points)

Implement the Valet and Garage classes.

A Valet instance has two instance attributes: their total tips and the garage where they work (a Garage
instance).

• The park method takes a string car and parks it in the Garage where they work.
• The wash method takes a string car that has been parked in their garage and a number tip. The
Valet who washed the car and the Valet who most recently parked the car split the tip.

The Garage constructor takes a list of the Valets who work in that Garage. Assume that park and wash
are only invoked on a Valet that already has a Garage.

class Valet:
"""A valet is tipped after they wash a car,
or after one of their parked cars is washed.

>>> shaun = Valet()
>>> katy = Valet()
>>> g = Garage([shaun, katy])
>>> shaun.park('Benz')
>>> katy.park('BMW')
>>> shaun.wash('Benz', 1) # $1.0 to Shaun
>>> katy.wash('Benz', 2) # $1.0 to Katy, $1.0 to Shaun

>>> shaun.park('Rolls')
>>> katy.park('Rolls')
>>> katy.wash('BMW', 2) # $2.0 to Katy
>>> shaun.wash('Rolls', 2) # $1.0 to Shaun, $1.0 to Katy
>>> [shaun.tips, katy.tips]
[3.0, 4.0]
"""
def __init__(self):

self.tips = 0
self.garage = None

def park(self, car):
_________

(a)

def wash(self, car, tip):
self.tips += tip / 2
_________ += tip / 2

(b)

class Garage:
"""A garage holds cars parked by the valets who work there."""
def __init__(self, valets):

self.cars = {}
for valet in valets:

_________ = _________
(c) (d)
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i. (2.0 pt) Fill in blank (a).

self.garage.cars[car] = self

ii. (2.0 pt) Fill in blank (b).

self.garage.cars[car].tips

iii. (1.0 pt) Fill in blank (c).

valet.garage

iv. (1.0 pt) Which of these could fill in blank (d)? (Select one.)

# Garage

# valet

# valets

# garage

# self.valet

# self.valets

# self.garage

 self
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(b) (2.0 points)

Definition. An infinite iterator t is one for which next(t) can be called any number of times and always
returns a value.

Implement ring, a generator function that takes a non-empty list s. It returns an infinite generator that
repeatedly yields the values of s in the order they appear in s.

def ring(s):
"""Yield all values of non-empty s in order, repeatedly.

>>> t = ring([2, 5, 3])
>>> [next(t), next(t), next(t), next(t), next(t), next(t), next(t)]
[2, 5, 3, 2, 5, 3, 2]
"""
_________:

(a)
_________

(b)

i. (1.0 pt) Which of these could fill in blank (a)? (Select one.)

 while True

# while s

# for x in s

# for x in ring(s)

ii. (1.0 pt) Fill in blank (b).

yield from s
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(c) (5.0 points)

Implement fork, a function that takes an infinite iterator t. It returns two infinite iterators that each
iterate over the contents of t.

def fork(t):
"""Return two iterators with the same contents as infinite iterator t.

>>> a, b = fork(ring([1, 2, 3]))
>>> [next(a), [next(b), next(b), next(b)], next(a), [next(b), next(b), next(b)], next(a)]
[1, [1, 2, 3], 2, [1, 2, 3], 3]
"""
s = []
def copy():

i = 0
while True:

if _________:
(a)

s.append(_________)
(b)

yield _________
(c)

i += 1
return _________

(d)

i. (1.0 pt) Fill in blank (a).

len(s) == i

ii. (1.0 pt) Fill in blank (b).

next(t)

iii. (1.0 pt) Which of these could fill in blank (c)? (Select one.)

# from s

# from t

# s[0]

 s[i]

# next(t)

iv. (2.0 pt) Fill in blank (d).

copy(), copy()
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4. (10.0 points) Thanos

Hint : you may call built-in sequence functions: sum, max, min, all, any, map, filter, zip, and reversed.

(a) (4.0 points)

Implement snap, which takes a one-argument function f, a one-argument function g, and a sequence s. It
returns a list of (x, f(x)) pairs (two-element tuples) for all x in s for which g(f(x)) is a true value. The
implementation of snap only calls f once per element of s; never twice.

Important: For full credit, your implementation may only call f once on each element of s.

def snap(f, g, s):
"""Return a list of (x, f(x)) pairs for each x in s such that g(f(x)) is a true value.

>>> snap(lambda x: x * x, lambda x: x < 10, range(5))
[(0, 0), (1, 1), (2, 4), (3, 9)]
>>> snap(lambda x: x * x, lambda x: x > 10, range(5))
[(4, 16)]
>>> snap(lambda x: x * x, lambda x: x and x - 9, range(5))
[(1, 1), (2, 4), (4, 16)]
"""
return [(x, _________) for _________ in _________ if _________]

(a) (b) (c) (d)

i. (1.0 pt) Fill in blank (a).

y

ii. (1.0 pt) Which of these could fill in blank (b)? (Select one.)

# x

 x, y

# y

# y, z

iii. (1.0 pt) Fill in blank (c).

zip(s, map(f, s)) or [(z, f(z)) for z in s]

iv. (1.0 pt) Fill in blank (d).

g(y)
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(b) (4.0 points)

Implement max_diff, which takes a non-empty sequence s and a one-argument function f. It returns
a pair of elements (v, w) in s for which f(v) - f(w) is largest. v and w may be the same or different
elements of s. Also, describe the order of growth of the run time of max_diff.

def max_diff(s, f):
"""Return two elements (v, w) of s for which f(v) - f(w) is largest.

>>> max_diff(range(-7, 4), lambda x: x * x) # (-7 * -7) - (0 * 0) = 49
(-7, 0)
>>> max_diff(['what', 'a', 'great', 'film'], len) # len('great') - len('a')
('great', 'a')
"""
assert s, 's cannot be empty'
v, w = None, None
for x in s:

for y in s:
if v is None or _________:

(a)
_________

(b)
return v, w

i. (1.0 pt) Fill in blank (a).

f(x) - f(y) > f(v) - f(w)

ii. (1.0 pt) Fill in blank (b).

v, w = x, y

iii. (2.0 pt) What is the order of growth of the time required to evaluate max_diff(s, f) for a sequence
s of length n and a function f that requires constant time to evaluate.

# Exponential, Θ(bn)

 Quadratic, Θ(n2)

# Linear, Θ(n)

# Logarithmic, Θ(log2 n)

# Constant, Θ(1)
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(c) (2.0 points)

Implement max_diff_fast, which has the same signature and behavior as max_diff, but has a faster
order of growth of its run time.

Important. You may not use a list comprehension in your solution.

def max_diff_fast(s, f):

return _________ , _________
(a) (b)

i. (1.0 pt) Fill in blank (a), but do not use a comprehension.

max(s, key=f)

ii. (1.0 pt) Fill in blank (b), but do not use a comprehension.

min(s, key=f)
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5. (9.0 points) Groot

Definition. A twig is a tree that is not a leaf but whose branches are all leaves.

The Tree and Link classes appear on your midterm 2 study guide. Assume they are defined.

(a) (4.0 points)

Implement twig, which takes a Tree instance t. It returns True if t is a twig and False otherwise.

def twig(t):
"""Return True if Tree t is a twig and False otherwise.

>>> twig(Tree(1))
False
>>> twig(Tree(1, [Tree(2), Tree(3)]))
True
>>> twig(Tree(1, [Tree(2), Tree(3, [Tree(4)])]))
False
"""
return _________ and _________

(a) (b)

i. (2.0 pt) Which of these could fill in blank (a)? Check all that apply. Hint : The bool function returns
True for a true value and False for a false value.

2 t

2 bool(t)

2 t.is_leaf()

� not t.is_leaf()

2 t.branches

� bool(t.branches)

2 len(t.branches)

� len(t.branches) > 0

2 len(t.branches) >= 0

ii. (2.0 pt) Fill in blank (b).

all([b.is_leaf() for b in t.branches])
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(b) (5.0 points)

Implement twigs, which takes a Tree instance t. It returns a linked list (either a Link instance or
Link.empty) containing all of the labels of the twigs in t. Labels should be in the same order as they
appear in repr(t).

def twigs(t):
"""Return a linked list of the labels of the twigs in t.

>>> t = Tree(1, [Tree(2), Tree(3, [Tree(4)]), Tree(5, [Tree(6, [Tree(7), Tree(8)])])])
>>> print(twigs(t))
<3 6>
>>> print(twigs(Tree(0, [t, t, t])))
<3 6 3 6 3 6>
>>> twigs(Tree(0)) is Link.empty
True
"""

def add_twigs(t, rest):

if twig(t):

return _________
(a)

for b in reversed(t.branches):

rest = _________
(b)

return rest

return add_twigs(t, _________)
(c)

i. (2.0 pt) Fill in blank (a).

Link(t.label, rest)

ii. (2.0 pt) Fill in blank (b).

add_twigs(b, rest)

iii. (1.0 pt) Fill in blank (c).

Link.empty



Exam generated for <EMAILADDRESS> 16

No more questions.


