
CS 61A Structure and Interpretation of Computer Programs
Fall 2016 Midterm 2

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5" × 11"
crib sheet of your own creation and the official CS 61A study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (8 points) Halloween (All are in Scope: WWPD, Object-Oriented Programming, Linked Lists)

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. The Link class appears on page 2 of the midterm 2 study guide.

The first two rows have been provided as examples.

Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have started python3 and executed the following statements:

class Party:
guests = Link.empty

def __init__(self, time):
Party.guests = Link(time+1, Party.guests)

def attend(self):
self.guests.rest = Link(self.guests.rest)
return self.guests

class Costume(Party):
def __init__(self, bow, tie):

Party.guests.rest = Link(bow)
self.ie = Link(self)

def attend(self):
print(repr(self.ie))
Party.attend = lambda self: Party(9).guests

def __repr__(self):
print('Nice')
return 'Costume'

Expression Interactive Output
Link(1, Link.empty) Link(1)
Link(1, Link(2)) Link(1, Link(2))
Party(1).guests

Party(3).attend()

Costume(5, 6).attend()

Party(7).attend()

Name: 3

2. (8 points) A List with a Twist (At least one of these is out of Scope: Environment Diagrams, Nonlocal,
Python Lists)

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Use box-and-pointer notation for list values. You do not need to write index numbers or the word “list”.

Global framelamb = 'da'
def da(da):
 def lamb(lamb):
 nonlocal da
 def da(nk):
 da = nk + ['da']
 da.append(nk[0:2])
 return nk.pop()
 da(lamb)
 return da([[1], 2]) + 3

da(lambda da: da(lamb))

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

f1: ___________ [parent=____________]

Return Value

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

f4: ___________ [parent=____________]

Return Value

4

3. (6 points) Return Policy (At least one of these is out of Scope: Nonlocal, Python Lists, Mutability)

Implement quota, which takes a one-argument function f and a non-negative integer limit. The function it
returns has the same behavior as f, except that each value is only returned up to limit times. After that, the
function returns an “Over quota” message instead, and the limit is decreased by 1 for future calls.

def quota(f, limit):
"""A decorator that limits the number of times a value can be returned.

>>> square = lambda x: x * x
>>> square = quota(square, 3)
>>> square(6) # 1st call with return value 36
36
>>> [square(5) for x in range(3)] # 3 calls when the limit is 3
[25, 25, 25]
>>> square(5) # 4th call with return value 25
'Over quota! Limit is now 2'
>>> square(-6) # 2nd call with return value 36
36
>>> square(-6) # 3rd call when the limit is 2
'Over quota! Limit is now 1'
>>> square(7) # 1st call when the limit is 1
49
>>> square(5) # 5th call with return value 25
'Over quota! Limit is now 0'
"""

values = []

def limited(n):

y = ___

count = len(___)

values.append(y)

if __:

return __

limit = ___

return 'Over quota! Limit is now ' ____________________________________

return limited

Name: 5

4. (6 points) A Classy Election (All are in Scope: Object-Oriented Programming)

Implement the VotingMachine and Ballot classes based on the doctest below. The voting machine must
determine which choice has the most votes (the winner) and detect if a ballot is used more than once. In
case of a tie, the winner among choices with maximal votes is the one that most recently received a vote.
Ballot.vote takes a string, and a VotingMachine must handle an arbitrary number of choices.

class VotingMachine:
"""A machine that creates and records ballots.

>>> machine = VotingMachine(4)
>>> a, b, c, d = machine.ballots
>>> d.vote('Bruin')
'Bruin is winning'
>>> b.vote('Bruin')
'Bruin is winning'
>>> c.vote('Bear')
'Bear is losing'
>>> a.vote('Bear')
'Bear is winning'
>>> c.vote('Tree')
'Fraud: multiple votes from the same ballot!'
>>> machine.winner
'Bear'
"""
def __init__(self, k):

self.ballots = [___________________________________ for i in range(k)]
self.votes = {}

def record(self, ballot, choice):
if ballot.used:

return 'Fraud: multiple votes from the same ballot!'

self.votes[choice] = __ + 1

if __:
return choice + ' is losing'

else:

return choice + ' is winning'

class Ballot:

def __init__(self, machine):
self.machine = machine

def vote(self, x):

return __

6

5. (6 points) Trick or Tree (All are in Scope: Trees, Linked Lists)

Implement path, which takes a linked list s and a Tree instance t. It returns whether s is a path from the
root of t to some leaf. The Tree and Link classes are on page 2 of the midterm 2 study guide.

Restrictions:

• You may not call the built-in len function on a linked list or invoke its __len__ method.

• You may not apply element selection (e.g., s[2]) on a linked list or invoke its __getitem__ method.

def path(s, t):
"""Return whether Link S is a path from the root to a leaf in Tree T.

>>> t = Tree(1, [Tree(2), Tree(3, [Tree(4), Tree(5)]), Tree(6)])
>>> a = Link(1, Link(3, Link(4))) # A full path
>>> path(a, t)
True
>>> b = Link(1, Link(3)) # A partial path
>>> path(b, t)
False
>>> c = Link(1, Link(2, Link(7))) # A path and an extra value
>>> path(c, t)
False
>>> d = Link(3, Link(4)) # A path of a branch
>>> path(d, t)
False
"""

if __:

return False

if __:

return True

return ______________([_______________________________ for b in t.branches])

Name: 7

6. (6 points) Left it Right There

(a) (4 pt) (All are in Scope: Trees) Implement binary, which takes a list s of unique integers. It returns a
binary search tree containing all of those integers, represented as a BTree instance or BTree.empty. The
values in any path of this tree must appear in the same order as they did in s. The BTree class is on page 2
of the midterm 2 study guide.

def binary(s):
"""Construct a binary search tree from S for which all paths are in order.

>>> binary([3, 5, 1])
BTree(3, BTree(1), BTree(5))
>>> binary([4, 3, 7, 6, 2, 9, 8])
BTree(4, BTree(3, BTree(2)), BTree(7, BTree(6), BTree(9, BTree(8))))
"""

assert len(s) == len(set(s)), 'All elements of s should be unique'

if __:

return __

root = __

left = __

right = ___

return BTree(root, binary(left), binary(right))

(b) (1 pt) (All are in Scope: Asymptotic Notation) Circle the Θ expression that describes the smallest possible
height of the tree returned by binary(s) for a list s of length n. The height of a tree is the length of the
longest path from its root to a leaf.

Θ(1) Θ(log n) Θ(n) Θ(n2) Θ(2n) None of these

(c) (1 pt) (All are in Scope: Asymptotic Notation) Circle the Θ expression that describes the largest possible
height of the tree returned by binary(s) for a list s of length n. The height of a tree is the length of the
longest path from its root to a leaf.

Θ(1) Θ(log n) Θ(n) Θ(n2) Θ(2n) None of these

8

7. (10 points) Summer Camp

(a) (6 pt) (All are in Scope: Tree Recursion, Python Lists) Implement sums, which takes two positive integers
n and k. It returns a list of lists containing all the ways that a list of k positive integers can sum to n. Results
can appear in any order.

def sums(n, k):
"""Return the ways in which K positive integers can sum to N.

>>> sums(2, 2)
[[1, 1]]
>>> sums(2, 3)
[]
>>> sums(4, 2)
[[3, 1], [2, 2], [1, 3]]
>>> sums(5, 3)
[[3, 1, 1], [2, 2, 1], [1, 3, 1], [2, 1, 2], [1, 2, 2], [1, 1, 3]]
"""

if __:

return ___

y = []

for x in __:

y.extend([______________________ for s in sums(______________________)])

return y

(b) (4 pt) (All are in Scope: Python Lists, Lambda Expressions) Why so many lines? Implement f and g for
this alternative version of the sums function.

f = lambda x, y: (x and [______________ for z in y] + f(_______, _______)) or []

def sums(n, k):
"""Return the ways in which K positive integers can sum to N."""

g = lambda w: (w and f(___)) or [[]]

return [v for v in g(k) if sum(v) == n]

