
CS 61A OOP
Fall 2024 Discussion 7: October 16, 2024

Switch to Pensieve:

• Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number (which
was in the email that assigned you to this lab).

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Getting Started
To get help from a TA, If you do not have an in-person TA, you can reach your TA using this Zoom link.

If there are fewer than 3 people in your group, feel free to merge your group with another group in the room.

Say your name and something you’ve practiced for a while, such as playing an instrument, juggling, or martial arts.
Did you discover any common interests among your group members?

Iterators
Q1: Draw

The draw function takes a list hand and a list of unique non-negative integers positions that are all less than the
length of hand. It removes hand[p] for each p in positions and returns a list of those elements in the order they
appeared in hand (not the order they appeared in positions).

Fill in each blank with one of these names: list, map, filter, reverse, reversed, sort, sorted, append, insert,
index, remove, pop, zip, or sum. See the built-in functions and list methods documentation for descriptions of what
these do.

Discussion Time: Before writing anything, talk as a group about what process you’ll implement in order to make
sure the right cards are removed and returned. Try not to guess-and-check! The purpose of discussion is for you to
try to solve problems without the help of an interpreter checking your work.

def draw(hand, positions):
"""Remove and return the items at positions from hand.

>>> hand = ['A', 'K', 'Q', 'J', 10, 9]
>>> draw(hand, [2, 1, 4])
['K', 'Q', 10]
>>> hand
['A', 'J', 9]
"""
return _____(_____([hand._____(i) for i in _____(_____(positions))]))

For a list s and integer i, s.pop(i) returns and removes the ith element, which changes the position (index) of all
the later elements but does not affect the position of prior elements.

https://tutor.pensieve.co/schools/berkeley/all/cs61a/cs61a_fa24/38385f57-787f-4d5f-9d06-474698bccc55/open
https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

2 OOP

Calling reversed(s) on a list s returns an iterator. Calling list(reversed(s)) returns a list of the elements in s
in reversed order.

Aced it? Give yourselves a hand!

Object-Oriented Programming
A productive approach to defining new classes is to determine what instance attributes each object should have and
what class attributes each class should have. First, describe the type of each attribute and how it will be used, then
try to implement the class’s methods in terms of those attributes.

Q2: Keyboard

Overview: A keyboard has a button for every letter of the alphabet. When a button is pressed, it outputs its letter
by calling an output function (such as print). Whether that letter is uppercase or lowercase depends on how many
times the caps lock key has been pressed.

First, implement the Button class, which takes a lowercase letter (a string) and a one-argument output function,
such as Button('c', print).

The press method of a Button calls its output attribute (a function) on its letter attribute: either uppercase if
caps_lock has been pressed an odd number of times or lowercase otherwise. The press method also increments
pressed and returns the key that was pressed. Hint: 'hi'.upper() evaluates to 'HI'.

Second, implement the Keyboard class. A Keyboard has a dictionary called keys containing a Button (with its
letter as its key) for each letter in LOWERCASE_LETTERS. It also has a list of the letters typed, which may be a mix
of uppercase and lowercase letters.

The type method takes a string word containing only lowercase letters. It invokes the press method of the Button
in keys for each letter in word, which adds a letter (either lowercase or uppercase depending on caps_lock) to the
Keyboard’s typed list. Important: Do not use upper or letter in your implementation of type; just call press
instead.

Read the doctests and talk about: - Why it’s possible to press a button repeatedly with .press().press().press().
- Why pressing a button repeatedly sometimes prints on only one line and sometimes prints multiple lines. - Why
bored.typed has 10 elements at the end.

Discussion Time: Before anyone types anything, have a conversation describing the type of each attribute and how
it will be used. Start with Button: how will letter and output be used? Then discuss Keyboard: how will typed
and keys be used? How will new letters be added to the list called typed each time a Button in keys is pressed?
Call the staff if you’re not sure! Once everyone understands the answers to these questions, you can try writing the
code together.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

OOP 3

LOWERCASE_LETTERS = 'abcdefghijklmnopqrstuvwxyz'

class CapsLock:
def __init__(self):

self.pressed = 0

def press(self):
self.pressed += 1

class Button:
"""A button on a keyboard.

>>> f = lambda c: print(c, end='') # The end='' argument avoids going to a new line
>>> k, e, y = Button('k', f), Button('e', f), Button('y', f)
>>> s = e.press().press().press()
eee
>>> caps = Button.caps_lock
>>> t = [x.press() for x in [k, e, y, caps, e, e, k, caps, e, y, e, caps, y, e, e]]
keyEEKeyeYEE
>>> u = Button('a', print).press().press().press()
A
A
A
"""
caps_lock = CapsLock()

def __init__(self, letter, output):
assert letter in LOWERCASE_LETTERS
self.letter = letter
self.output = output
self.pressed = 0

def press(self):
"""Call output on letter (maybe uppercased), then return the button that was

pressed."""
self.pressed += 1
"*** YOUR CODE HERE ***"

Since self.letter is always lowercase, use self.letter.upper() to produce the uppercase version.

The number of times caps_lock has been pressed is either self.caps_lock.pressed or Button.caps_lock.pressed
.

The output attribute is a function that can be called: self.output(self.letter) or self.output(self.letter
.upper()). You do not need to return the result.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 OOP

class Keyboard:
"""A keyboard.

>>> Button.caps_lock.pressed = 0 # Reset the caps_lock key
>>> bored = Keyboard()
>>> bored.type('hello')
>>> bored.typed
['h', 'e', 'l', 'l', 'o']
>>> bored.keys['l'].pressed
2

>>> Button.caps_lock.press()
>>> bored.type('hello')
>>> bored.typed
['h', 'e', 'l', 'l', 'o', 'H', 'E', 'L', 'L', 'O']
>>> bored.keys['l'].pressed
4
"""
def __init__(self):

self.typed = []
self.keys = ... # Try a dictionary comprehension!

def type(self, word):
"""Press the button for each letter in word."""
assert all([w in LOWERCASE_LETTERS for w in word]), 'word must be all lowercase'
"*** YOUR CODE HERE ***"

The keys can be created using a dictionary comprehension: self.keys = {c: Button(c, ...) for c in LETTERS
}. The call to Button should take c and an output function that appends to self.typed, so that every time
one of these buttons is pressed, it appends a letter to self.typed.

Call the press method of self.key[w] for each w in word. It should be the case that when you call press, the
Button is already set up (in the Keyboard.__init__ method) to output to the typed list of this Keyboard.

Presentation Time: Describe how new letters are added to typed each time a Button in keys is pressed. Instead
of just reading your code, say what it does (e.g., “When the button of a keyboard is pressed …”). One short sentence
is enough to describe how new letters are added to typed. Pick someone who hasn’t presented to the course staff
recently to share your group’s answer with your TA (in person or on Zoom).

Q3: Bear

Implement the SleepyBear, and WinkingBear classes so that calling their print method matches the doctests. Use
as little code as possible and try not to repeat any logic from Eye or Bear. Each blank can be filled with just two
short lines.

Discussion Time: Before writing code, talk about what is different about a SleepyBear and a Bear. When using
inheritance, you only need to implement the differences between the base class and subclass. Then, talk about
what is different about a WinkingBear and a Bear. Can you think of a way to make the bear wink without a new
implementation of print?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1

OOP 5

class Eye: ”””An eye.

>>> Eye().draw()
'0'
>>> print(Eye(False).draw(), Eye(True).draw())
0 -
"""
def __init__(self, closed=False):

self.closed = closed

def draw(self):
if self.closed:

return '-'
else:

return '0'

class Bear:
"""A bear.

>>> Bear().print()
? 0o0?
"""
def __init__(self):

self.nose_and_mouth = 'o'

def next_eye(self):
return Eye()

def print(self):
left, right = self.next_eye(), self.next_eye()
print('? ' + left.draw() + self.nose_and_mouth + right.draw() + '?')

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 OOP

class SleepyBear(Bear):
"""A bear with closed eyes.

>>> SleepyBear().print()
? -o-?
"""
"*** YOUR CODE HERE ***"

class WinkingBear(Bear):
"""A bear whose left eye is different from its right eye.

>>> WinkingBear().print()
? -o0?
"""
def __init__(self):

"*** YOUR CODE HERE ***"

def next_eye(self):
"*** YOUR CODE HERE ***"

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://forms.gle/UCYakosihNmKSuZE9

	Getting Started
	Iterators
	Q1: Draw

	Object-Oriented Programming
	Q2: Keyboard
	Q3: Bear

	Document the Occasion

