
CS 61A Recursion
Fall 2024 Discussion 3: September 18, 2024

If you do not have an in-person TA, you can reach your TA using this Zoom link.

If there are fewer than 3 people in your group, feel free to merge your group with another group in the room.

Now switch to Pensieve:

• Everyone: Go to pensieve.co, log in with your @berkeley.edu email, and enter your group number (which
was in the email that assigned you to this lab).

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Getting Started
Say your name and share a food that you really liked as a child. (It’s ok if you still like that food now.)

After Midterm 1, some students are looking for more effective ways to study. One great option is to meet up with
your discussion group outside of class to review practice problems together. Now is a great time to schedule a time
and place for some extra group practice of old Midterm 1 questions. This is optional and not everyone needs to come,
but if there are Midterm 1 topics that haven’t totally clicked yet, this weekend is a perfect time to review them.

Everything in this course builds on prior topics, and it’s going to be hard to keep up if you don’t have a solid
understanding of Midterm 1 material.

Remember, it’s ok if someone hasn’t learned everything yet and needs more time to master the course material. The
whole point of the course is for students to learn things they don’t already know. Please support each other in the
process.

Recursion
Many students find this discussion challenging. Everything gets easier with practice. Please help each other learn.

VERY IMPORTANT: In this discussion, don’t check your answers until your whole group is sure that the answer
is right. Figure things out and check your work by thinking about what your code will do. Your goal should be to
have all checks pass the first time you run them! If you need help, ask.

Q1: Swipe

Implement swipe, which prints the digits of argument n, one per line, first backward then forward. The left-most
digit is printed only once. Do not use while or for or str. (Use recursion, of course!)

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1
https://tutor.pensieve.co/schools/berkeley/all/cs61a/cs61a_fa24/65c3c19700186225a7e63bf2/open

2 Recursion

def swipe(n):
"""Print the digits of n, one per line, first backward then forward.

>>> swipe(2837)
7
3
8
2
8
3
7
"""
if n < 10:

print(n)
else:

"*** YOUR CODE HERE ***"

First print the first line of the output, then make a recursive call, then print the last line of the output.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 3

Q2: Skip Factorial

Define the base case for the skip_factorial function, which returns the product of every other positive integer,
starting with n.

def skip_factorial(n):
"""Return the product of positive integers n * (n - 2) * (n - 4) * ...

>>> skip_factorial(5) # 5 * 3 * 1
15
>>> skip_factorial(8) # 8 * 6 * 4 * 2
384
"""
if ___:

return ___
else:

return n * skip_factorial(n - 2)

If n is even, then the base case will be 2. If n is odd, then the base case will be 1. Try to write a condition that
handles both possibilities.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Recursion

Q3: Is Prime

Implement is_prime that takes an integer n greater than 1. It returns True if n is a prime number and False
otherwise. Try following the approach below, but implement it recursively without using a while (or for) statement.

def is_prime(n):
assert n > 1
i = 2
while i < n:

if n % i == 0:
return False

i = i + 1
return True

You will need to define another “helper” function (a function that exists just to help implement this one). Does it
matter whether you define it within is_prime or as a separate function in the global frame? Try to define it to take
as few arguments as possible.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
"*** YOUR CODE HERE ***"

Define an inner function that checks whether some integer between i and n evenly divides n. Then you can call it
starting with i=2:

def is_prime(n):
def f(i):

if n % i == 0:
return ____

elif ____:
return ____

else:
return f(____)

return f(2)

Documentation: Come up with a one sentence docstring for the helper function that describes what it does. Don’t
just write, “it helps implement is_prime.” Instead, describe its behavior. If you need help, ask!

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 5

Q4: Recursive Hailstone

Recall the hailstone function from Homework 1. First, pick a positive integer n as the start. If n is even, divide
it by 2. If n is odd, multiply it by 3 and add 1. Repeat this process until n is 1. Complete this recursive version of
hailstone that prints out the values of the sequence and returns the number of steps.

def hailstone(n):
"""Print out the hailstone sequence starting at n,
and return the number of elements in the sequence.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
>>> b = hailstone(1)
1
>>> b
1
"""
print(n)
if n % 2 == 0:

return even(n)
else:

return odd(n)

def even(n):
return ____

def odd(n):
"*** YOUR CODE HERE ***"

An even number is never a base case, so even always makes a recursive call to hailstone and returns one more than
the length of the rest of the hailstone sequence.

An odd number might be 1 (the base case) or greater than one (the recursive case). Only the recursive case should
call hailstone.

Recommended: Once your group has converged on a solution, it’s time to practice your ability to describe your
own code. Nominate someone to describe how your solution works and have them present to the group for practice.
Then, tell this description to your TA for feedback (on Zoom if your TA is remote).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://berkeley.zoom.us/j/91340395124?pwd=7Lqljf1tslL0QlufLz6HrBtSCB8Ojv.1

6 Recursion

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Extra Questions
The questions below are recommended but optional. Don’t worry if you don’t get to them (but at least read the
first one).

You’ll need your whole discussion group for this question. At least try it out. You might have fun.

Q5: Sevens

The Game of Sevens: Players in a circle count up from 1 in the clockwise direction. (The starting player says 1,
the player to their left says 2, etc.) If a number is divisible by 7 or contains a 7 (or both), switch directions. Numbers
must be said on the beat at 60 beats per minute. If someone says a number when it’s not their turn or someone
misses the beat on their turn, the game ends.

For example, 5 people would count to 20 like this:

Player 1 says 1
Player 2 says 2
Player 3 says 3
Player 4 says 4
Player 5 says 5
Player 1 says 6 # All the way around the circle
Player 2 says 7 # Switch to counterclockwise
Player 1 says 8
Player 5 says 9 # Back around the circle counterclockwise
Player 4 says 10
Player 3 says 11
Player 2 says 12
Player 1 says 13
Player 5 says 14 # Switch back to clockwise
Player 1 says 15
Player 2 says 16
Player 3 says 17 # Switch back to counterclockwise
Player 2 says 18
Player 1 says 19
Player 5 says 20

Play a few games. Post the highest score your group reached on Discord.

Then, implement sevens which takes a positive integer n and a number of players k. It returns which of the k players
says n. You may call has_seven.

An effective approach to this problem is to simulate the game, stopping on turn n. The implementation must keep
track of the final number n, the current number i, the player who will say i, and the current direction that
determines the next player (either increasing or decreasing). It works well to use integers to represent all of these,
with direction switching between 1 (increase) and -1 (decreasing).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://forms.gle/UCYakosihNmKSuZE9
https://www.youtube.com/watch?v=ymJIXzvDvj4

Recursion 7

def sevens(n, k):
"""Return the (clockwise) position of who says n among k players.

>>> sevens(2, 5)
2
>>> sevens(6, 5)
1
>>> sevens(7, 5)
2
>>> sevens(8, 5)
1
>>> sevens(9, 5)
5
>>> sevens(18, 5)
2
"""
def f(i, who, direction):

if i == n:
return who

"*** YOUR CODE HERE ***"

return f(1, 1, 1)

def has_seven(n):
if n == 0:

return False
elif n % 10 == 7:

return True
else:

return has_seven(n // 10)

First check if i is a multiple of 7 or contains a 7, and if so, switch directions. Then, add the direction to who and
ensure that who has not become smaller than 1 or greater than k.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Recursion

Q6: Karel the Robot

Karel the robot starts in the corner of an n by n square for some unknown number n. Karel responds to only four
functions: - move() moves Karel one square forward if there is no wall in front of Karel and errors if there is. -
turn_left() turns Karel 90 degrees to the left. - front_is_blocked() returns whether there is a wall in front of
Karel. - front_is_clear() returns whether there is no wall in front of Karel.

Implement a main() function that will leave Karel stopped halfway in the middle of the bottom row. For example,
if the square is 7 x 7 and Karel starts in position (1, 1), the bottom left, then Karel should end in position (1, 4)
(three steps from either side on the bottom row). Karel can be facing in any direction at the end. If the bottom row
length is even, Karel can stop in either position (1, n // 2) or (1, n // 2 + 1).

Important You can only write if or if/else statements and function calls in the body of main(). You may not
write assignment statements, def statements, lambda expressions, or while/for statements.

For every two steps forward, take one step back to end up in the middle.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://compedu.stanford.edu/karel-reader/docs/python/en/chapter1.html

	Getting Started
	Recursion
	Q1: Swipe
	Q2: Skip Factorial
	Q3: Is Prime
	Q4: Recursive Hailstone

	Document the Occasion
	Extra Questions
	Q5: Sevens
	Q6: Karel the Robot

